AGRIS - International System for Agricultural Science and Technology

Study of The Genetic Diversity In EL-Shami Mulberry Genotypes Morus nigra L. and The Effect of Some Treatments on The Sex Expression Modification

2023

Hussam Baroudi

AGROVOC Keywords

Bibliographic information
Publisher
Tishreen University Faculty of Agriculture Engineering
Other Subjects
Issr; توت شامي; التعبير الجنسي; تنوع وراثي; متطلبات البرودة; Sex expression; Morus nigra l.; Cri; Chilling requierments; Genetic diversity; El-shami mulberry; Ssr
Language
Arabic
Note
References 13. AFSHARI, H.; TAJABADIPOUR, A.; HOKMABADI, H.; and M. MOHAMADI MOGHADAM, (2009). Determining chilling requirement of four pistachio cultivars in Semnan (Iran). African Journal of Agricultural Research, 4 (2), 55- 59. 14. AGGARWAL, M; SHRIVASTAVA, N; H. PAD, (2008). Advances In Molecular Marker Techniques and their Applications in Plant Sciences. Plant Cell Report, 27, 617- 631. DOI: https://doi.org/10.1007/s00299-008-0507-z. 15. AGGARWAL, R. K; UDAYKUMAR, D; HENDRE, P; SARKAR, A; L, SINGH, (2004). Isolation and characterization of six novel microsatellite markers for mulberry (Morus indica). Molecular Ecology Notes, 4, 477- 479. DOI: https://doi.org/10.1111/j.1471-8286.2004.00718.x. 16. ALBURQUERQUE, N.; GARCA-MONTIEL, F.; CARRILLO, A.; and L. BURGOS, (2008). Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environmental and Experimental Botany, 64, 162- 170. 17. ALESSANDRO, B.; GIANNI, B.; SILIVIA, C.; and D. RICCARDO, (2005). DNA fingerprinting sheds light on the origin of introduced mulberry (Morus spp.) accessions in Italy. Genetic resources and crop evolution, 52, 181- 192. 18. AL-JUBOORY, H.; and W. SPLITTSTOSSER, (1994). Effect of Gibberelic acid and Ethephon on sex expression and yield of gynoecias cucumbes. The Iraqi journal of agriculture science, 25, (1), 34- 41. 19. ARON, R.; and Z. GAT, (1991). Estimating chilling duration from daily temperature extremes and elevation in Palestine. Clim Res, 1, 125- 132. 20. ARVIND, K, A.; NAGARAJA, G. M, NAIK, G. V.; KANGINAKUDRU, S.; THANGAVELU, K.; and J. NAGARAJU, (2004). Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC genetics, 5, 1, 1- 9. DOI: https://doi.org/10.1186/1471-2156-5-1. 21. ATMAKURI, A. R.; CHAUDHURY, R.; MALIK, S. K.; KUMAR, S.; RAMACHANDRAN, R.; and H. QADRI, (2009). Mulberry biodiversity conservation through cryopreservation. In vitro cell, Dev, Biol Plant, 45, 639- 649. 22. BAHANDARI, M. C.; and N. D. SEM, (1973). Effect of certain growth regulators on the sex expression of Citrullus. Lamatus. Mansf. Biochem and physiologie der pflanzen, 164, 450- 453.23. BAKAR, M, (2005). A new software for measuring leaf area and area Damaged by Tetranychus Uritcae Koch. Jen, 129, )3), 173- 175. 24. BANERJEE, R.; CHATTOPADHYAY, S.; and K. A. SAHA, (2016). Genetic diversity and relationship of mulberry genotypes Revealed by RAPD and ISSR markers. Journal of Crop Improvement, 30, (4), 478- 492. 25. BANERJEE, R.; ROYCHOWDHURI, S.; SAU, S.; DAS, B.; GHOSH, P.; and B. SARATCHANDRA, (2007). Genetic diversity and interrelationship among Mulberry genotypes. Journal of genetic and genomics, 34, (8), 691- 697. 26. BARBOUR, J.; READ, R.; and R. BARNES, (2008). Moraceae. mulberry family Morus L. mulberry. Woody Plant Seed Manual, 728- 732. 27. BHATTARCHARYA, E.; and S. RANADE, (2001). Molecular distinction amongst varieties of mulberry using RAPD and DAMD profiles. BMC Plant Biology, 1, (1), 3. 28. BOOTPROM, N.; SONGSRI, P.; KONGPUN, N.; and A. SABRAO, (2014). Genetics diversity based on horticultural traits and total soluble solid content in mulberry (Morus alba) varieties. Journal of Breeding and Genetics, 46, (2), 231- 240. 29. BOUBYA, A.; SALAH, M.; MARZOUGUI, N.; and A. FERCHICHI, (2009). Pomological characterization of the Mulberry tree (Morus spp.) in the South of Tunisia. Journal of Arid land studies, 19, (1), 157-159. 30. BYERS, R, (1993). Controlling growth of bearing apple trees with Ethephon. HortScience, 28, (11), 1103- 1105. 31. CAMPBELL, J, (1995). Winter Chill, Apples and pears for warmer districts. The Sixth Conference of the Australasian Council on Tree and Nut Crops. Inc, Lismore, NSW, Australia, 11-15. 32. CAMPBELL, J, (2014). A mess of Muddled Mulberries. Bluegrass wood land, 1- 58. 33. CAMPOY, A.; RUIZ, D.; and J, EGEA, (2010). Effects of shading and thidiazuron oil treatment on dormancy breaking, blooming and fruit set in apricot in a warm-winter climate. Science of Horticulture, 125, 203- 210. 34. CARMEN, L.; JOSE, R.; JESUS, G.; GABBINO, R.; B. MARIA, (2012). Gene expression analysis of chilling requirements for flower bud break in peach. Plant Breeding, 131, 329- 334. 35. CHAAR, J.; and D. ASTORGA, (2012). Determination of the requirement of cold and heat in peach [Prunus persica (L.) Batsch. through a correlation model. RIA, Revista de Investigaciones Agropecuarias, 38, 289- 298.36. CHANDLER, W. H, (1958). Deciduous orchards. Lea & Feblger. Philadelphia, U.S.A, 1, 492. 37. CHANGA, L-Y; LIB, K-T; YANGB, W, J; CHANGC, J-H; and M-W, CHANGDA, (2014). Phenotypic classification of mulberry (Morus) species in Taiwan using numerical taxonomic analysis through the characterization of vegetative traits and chilling requirements. Scientia Horticulturae, 176, 208- 217. 38. CHANNAPPA, B. M.; BANDEKODIGENAHALLI, M. P.; SHAILAJA, H.; and P. P. HOSAGAVI, (2009). DNA marker-assisted evaluation of cultivated and local mulberry genotypes of southern India. Crop Breeding and Applied Biotechnology, 9, 239- 245. 39. CHANOTRA, S; SHARMA, P; BHAT, M; KAPOOR, S; VERMA, G; ANGOTRA, J ;and S, LANGER, (2023). Morpho-metric Analysis of Leaf and Fruit of Selected Mulberry Accessions: A Preliminary Measure for Diversity Analysis. International Journal of Plant & Soil Science, 35, (5), 96- 108. 40. CHATTERJEE, S. N.; NAGARAJA, G. M.; SRIVASTAVA, P. P.; and G. NAIK, (2004). Morphological and molecular variation of Morus laevigata in India. Genetica, 121, 133-143. 41. CHHETRI, A.; RAMJAN, M.; and N. DOLLEY, (2018). Various models to calculate chill units in fruit crops. Indian farmer, 5, (04), 439- 442. 42. CHIKKASWAMY, B. K.; and P. M. PRASAD, (2012). Evaluation of genetic diversity and relationships in mulberry varieties using RAPD and ISSR molecular markers. International journal of molecular biology, 3, (3), 62- 70. 43. CLAROS, G. M.; CRESPILLO, R.; AGILAR, M. I and F. M. CANOVAS, (2000). DNA Fingerprinting and classification of geographically related genotypes of olive- tree (olea europaea L.). Euphytica, 116, 131- 142. 44. COOPERATIVE EXTENSION COLLEGE OF AGRICULTURE, (1998). The University of Arizona, CCU, Fruit Trees. Arizona Master Gardener Manual, 11, 2- 4. 45. CORREIA, P. J.; and M. A. MARTINS-LOUCAO, (2004). Effect of nitrogen and potassium fertilization on vegetative growth and flowering of mature carob trees (ceratoina siliqua): variation in leaf area index and water use indices. Australian journal of experimental agriculture, 44, (1), 83- 89. 46. DANDIN, S. B.; KUMAR, R.; RABINDRAN, S.; and S. M. JOLLY, (1987). Cross ability studies in mulberry. Indian Journal of Sericulture, 24, 1- 4.47. DAS, B. C.; and S. KRISHNASWAMI, (1965). Some observations on interspecies hybridization in mulberry. Indian Journal of Sericulture, 4, 1- 4. 48. DATTA, R, (2002). Mulberry cultivation and utilization in India, FAO Electronic Conference on Mulberry cultivation and utilization in India mulberry for animal production. FAO animal production and health paper, 147, 45- 62. 49. De Riek, j; Calsyn, E; Everaert, L; Van Bockstaele, E; M, De Loose, (2001). AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theoretical and Applied Genetics, 103, 1254- 1265. DOI: https://doi.org/10.1007/s001220100710. 50. DEMIREL, M. A.; and K. YILDIZ, (2021). Flower structures of black mulberry (Morus nigra) trees. Turkish Journal of Food and Agriculture, Sci, 3, (2), 60- 65. 51. DENISE, N.; and G. SUNGHEE, (2013). Chill Unit Models For Predicting Dormancy Completion of Floral Buds In Apple and Cherry. Hort Environ, Biotechnology, 54, (1), 29-36. 52. DENNIS, G. (2003), Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. Horticulture Science, 38, 347- 350. 53. DONMEZ, D; KARAAT, F; AKA-KACAR, Y; O, SIMSEK, (2023). Molecular characterization and association of ISSR markers with some fruits properties of Morus alba L. Genotypes in southeastern Turkey. Genet Resour Crop Evol. DOI: https://Doi.org/10.1007/S16722- 023- 01563-2. 54. DOYLE, J. J.; and L. J. DOYLE, (1990). A Rapid DNA Isolation Procedure For Small Quantities Of Fresh Leaf Tissue. Phytochemical Bullettin, 19, 11-15. 55. DOYMAZ. I. (2004). Pretreatment Effect on Sun Drying of Mulberry Fruits (Morus alba L.). Journal of Food Engineering, 65, (2), 205- 209. 56. ERCISLI, S.; and E. ORHAN, (2007). Chemical composition of white (Morus alba), red (M. rubra), and black (M. nigra) mulberry fruits. food chemistry, 103, 1380- 1384. 57. ERCISLI, S.; and E. ORHAN, (2008). Some physico-chemical characteristics of black mulberry (Morus nigra. L) genotypes from northeast Anatolia region of Turkey. Scirntia horticulturae, 116, 41- 46. 58. EREZ, A.; and A. G. COUVILLON, (1987). Characterization of the influence of moderate temperatures on rest completion in peach. J, Am, Soc, Horticulture Science, 112, 677- 68059. EREZ, A. (2000). Bud dormancy, phenomenon, problems and solutions in the tropics and subtropics. In: Erez, A. (Ed.), Temperate Fruit Crops in Warm Climates. Kluwer Academic Publishers, Dordrecht, The Netherlands, 28- 39. 60. ERICA, F.; SARA, H.; BRENDA, I.; GUERRERO, M.; ENGRACIA, G.; and R. JAVIER, (2020). Chilling and heat requirements of temperate stone fruit trees (Prunus sp.). Agronomy, 10, (409). 61. EUN-JU, P.; MIN-UK, K.; MYOUNG-SEOB, C.; GYOO-BYUNG, S.; and N. SI-KAB, (2020). Analysis of the genetic relationship among mulberry (Morus spp.) Cultivars using inter-simple sequence repeat (ISSR ) markers. Int, J, Indust, Entomol, 41, (2), 56- 62. DOI: http://dx.doi.org/10.7852/ijie.2020.41.2.56. 62. FNAFC, A. (1997). Flora of north America editorial committee. flora of North America North to Mexico, 3, 390- 392. 63. FRANKEL, R.; and E. GALUN, (1977). Pollination mechanisms, reproduction and plant breeding. Springer-verlag, Berlin. 64. FREEMAN, H. (1978). Temperate-zone pomology, freeman and company. San Francisco, 428. 65. GAM, I.; and N. TURKOGLU, (2004). Studies on some phonological and pomological traits of Mulberry grown in Edremit and Gevas regions. Agriculture Science, 14, (2), 127- 131. 66. GARCIA-GOMEZ, B.; GONZALEZ-ALVAREZ, H.; MARTINEZ-MORA, C.; CENIS, JL.; PEREZ-HERNANDEZ, MDC.; MARTINEZ-ZUBIAUR, Y.; P. MARTINEZ-GOMEZ, (2019). The molecular characterization of an extended mulberry germplasm by SSR markers. Genetika, 51, (2), 389- 403. DOI: https://doi.org/10.2298/GENSR1902389G. 67. GERASOPOULS, D.; and G. STRAVROULAKIS, (1997). Quality characteristics of four mulberry (Morus sp) cultivars in the area of China, Greece. Journal of Science and Food agriculture, 73, 261- 264. 68. GILREATH, P. R.; and D. W. BUCHANAN, (1981). Rest prediction model for low chilling Sungold nectarine. J, Amer, Soc, Horticulture Science, 106, 426- 429. 69. GOVINDA, R.; and H. BASAVAIA, (2014). Effect of growth regulators on sex modification and leaf lobation in two popular cultivars of mulberry (Morus spp.). Journal of science, 4, (5), 267- 271. 70. GOWER, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325- 338.71. GRIGGS, L.; and B. WAKRI, (1973). Development of seeded and parthenocarpic fruits in Mulberry (Morus rubra. L). Journal of Horticulture Science, 48, 83- 97. 72. GROVER, A.; P. C. SHARMA, (2016). Development and use of molecular markers, past and present. Critical reviews in Biotechnology, 36, (2), 290- 302. DOI: https://doi.org/10.3109/07388551.2014.959891. 73. GUPTA, S.; SRIVASTAVA, M.; MISHRA, GP.; NAIK, PK.; CHAUHAN, RS.; and S. K. TIWARI, (2008). Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. African journal of Biotechnology, 7, 4230-4243. 74. HANCOCK, J. M, (1995). The contribution of slippage-like processes to genome evolution. J, Mol, evol, 41, 1038- 1047. 75. HERMS, D. A. (2004). Using degree-days and plant phenology to predict pest activity. Tactics and Tools for IPM, 49- 59. 76. HONNEGOWDA VENKATESH, K. (2021). Studies on Basic Chromosome Number, Ploidy Level, Chromosomal Association and Configuration and Meiotic Behavior in Mulberry (Morus Spp.). Cytogenetics - Classical and Molecular Strategies for Analysing Heredity Material. IntechOpen. DOI: https://doi.org/10.5772/intechopen.97143. 77. HUO, Y. (2002). Mulberry cultivation and utilization in china mulberry for animal production. FAO animal production and health paper, 147, 11- 44. 78. IMRAN, M.; KHAN, H.; SHAH, M.; KHAN, R.; and F. KHAN, (2010). Chemical composition and antioxidant activity of certain Morus species. Journal of Zhejiang University Sci B, 973- 980. 79. IRUELA, M.; RUBIO, J.; CUBERO, JI.; GIL, J.; T. MILLÁN, (2002). Phylogenetic analysis in the genus cicer and cultivated chickpea using RAPD and ISSR markers. Theor Appl genet, 104, 643- 651. DOI: https://doi.org/10.1007/s001220100751. 80. JACCARD, P. (1908). Nouvelles recherches Sur La Distribution Florale,. Bulletin de la Société vaudoise des Sciences Naturelles, 44, 223- 270. 81. JAISWAL, V. S.; and A. KUMAR, (1980). Induction of male inflorescences on the female plants of Morus nigra L. by GA3. Indian Journal of experimental biology, 18, 911- 913. 82. JOHRI, M. M.; and D. MITRA, (2001). Action of plant hormones. Current Science, 80, (2), 25. 83. JOLLY, S.; DANDIN, S.; RABINDRAN, S.; and R. KUMAR, (1986). Sexual polymorphism in genus Morus L. Proceeding of the Indian Academy of Sciences (Plant Science), 96, (4), 315- 320.84. JONES, J. B, (2001). Laboratory guide for conducting soil testes and plants analysis. CRC press, Boca Raton Florida, USA. 85. JONES, K. S.; and R. L. COSTELLO, (2007). Selecting fruit, nut and berry crops for home gardens in San Mateo and San Francisco countries. University of California Division of agriculture and natural resources. 86. KADRI, S.; SALEH, A.; ELBITAR, A.; and A. CHEHADE, (2021). Genetic diversity assessment of ancient Mulberry (Morus spp.) in Lebanon using morphological, chemical and molecular markers (SSR and ISSR). Advances in Horticultural Science, 35, (3), 243- 253. DOI: https://doi.org/10.36253/ahsc8376. 87. KAFKAS, S.; OZGEN, M.; DOGAN, Y.; OZCAN, B.; ERCISLI, S.; and S. SERCE. (2008). Molecular characterization of Mulberry accessions in Turkey by AFLP markes. Journal of the American society for horticultural science, 133, 593- 597. DOI: https://doi.org/10.21273/JASHS.133.4.593. 88. KAR, P. K.; SRIVASTAVA, P. P.; AWASTHI, A. K.; and R. S. URS, (2008). Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.). Tree Genetics and Genomes, 4, (1), 75- 83. 89. KOIDZUMI, G. (1917). Taxonomy and phytogeography of the genus Morus. Bulletin of Sericulture Experimentation Station, Tokyo (Japan), 3, (1), 62. 90. KUMARA, R.; THIMMA, H.; GOWDA, M.; DEVAMANI, M.; and G. RADHAKRISHNA, (2022). Genotypic and phenotypic variability in a clone of mulberry cultivar, Vishala. Sericologia, 62, (1), 9- 17. 91. LANG, A. (1987). Dormancy: a new universal terminology. Horticulture Science, 22, 817- 820. 92. LAN-YEN, C.; KUO-TAN, L.; WEN-JU, Y.; JER-CHIA, C.; and C. MING-WEN, (2014). Phenotypic classification of mulberry (Morus) species in Taiwan using numerical taxonomic analysis through the characterization of vegetative traits and chilling requirements. Scientia Horticulturae, 176, 208- 217. 93. LIDA, Z.; KAIJING, Z.; FEI, Z.; YOUFANG, C.; JIANG, W.; G. YIDON, (2006). Conservation of noncoding microsatellites in plants: implication for gene regulation. BMC Genomics, 7, 323. 94. LJUBOJEVI´C, M.; ŠAVIKIN, K.; ZDUNIC´, G.; BIJELIC´, S.; MRDAN, S.; KOZOMARA, M.; PUŠI´C, M.; and T. C. NARANDŽI´, (2023). Selection of Mulberry Genotypes from Northern Serbia for ‘Ornafruit’ Purposes. Horticulturae, 9, 28. DOI: https://doi.org/10.3390/horticulturae9010028.84. JONES, J. B, (2001). Laboratory guide for conducting soil testes and plants analysis. CRC press, Boca Raton Florida, USA. 85. JONES, K. S.; and R. L. COSTELLO, (2007). Selecting fruit, nut and berry crops for home gardens in San Mateo and San Francisco countries. University of California Division of agriculture and natural resources. 86. KADRI, S.; SALEH, A.; ELBITAR, A.; and A. CHEHADE, (2021). Genetic diversity assessment of ancient Mulberry (Morus spp.) in Lebanon using morphological, chemical and molecular markers (SSR and ISSR). Advances in Horticultural Science, 35, (3), 243- 253. DOI: https://doi.org/10.36253/ahsc8376. 87. KAFKAS, S.; OZGEN, M.; DOGAN, Y.; OZCAN, B.; ERCISLI, S.; and S. SERCE. (2008). Molecular characterization of Mulberry accessions in Turkey by AFLP markes. Journal of the American society for horticultural science, 133, 593- 597. DOI: https://doi.org/10.21273/JASHS.133.4.593. 88. KAR, P. K.; SRIVASTAVA, P. P.; AWASTHI, A. K.; and R. S. URS, (2008). Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.). Tree Genetics and Genomes, 4, (1), 75- 83. 89. KOIDZUMI, G. (1917). Taxonomy and phytogeography of the genus Morus. Bulletin of Sericulture Experimentation Station, Tokyo (Japan), 3, (1), 62. 90. KUMARA, R.; THIMMA, H.; GOWDA, M.; DEVAMANI, M.; and G. RADHAKRISHNA, (2022). Genotypic and phenotypic variability in a clone of mulberry cultivar, Vishala. Sericologia, 62, (1), 9- 17. 91. LANG, A. (1987). Dormancy: a new universal terminology. Horticulture Science, 22, 817- 820. 92. LAN-YEN, C.; KUO-TAN, L.; WEN-JU, Y.; JER-CHIA, C.; and C. MING-WEN, (2014). Phenotypic classification of mulberry (Morus) species in Taiwan using numerical taxonomic analysis through the characterization of vegetative traits and chilling requirements. Scientia Horticulturae, 176, 208- 217. 93. LIDA, Z.; KAIJING, Z.; FEI, Z.; YOUFANG, C.; JIANG, W.; G. YIDON, (2006). Conservation of noncoding microsatellites in plants: implication for gene regulation. BMC Genomics, 7, 323. 94. LJUBOJEVI´C, M.; ŠAVIKIN, K.; ZDUNIC´, G.; BIJELIC´, S.; MRDAN, S.; KOZOMARA, M.; PUŠI´C, M.; and T. C. NARANDŽI´, (2023). Selection of Mulberry Genotypes from Northern Serbia for ‘Ornafruit’ Purposes. Horticulturae, 9, 28. DOI: https://doi.org/10.3390/horticulturae9010028.84. JONES, J. B, (2001). Laboratory guide for conducting soil testes and plants analysis. CRC press, Boca Raton Florida, USA. 85. JONES, K. S.; and R. L. COSTELLO, (2007). Selecting fruit, nut and berry crops for home gardens in San Mateo and San Francisco countries. University of California Division of agriculture and natural resources. 86. KADRI, S.; SALEH, A.; ELBITAR, A.; and A. CHEHADE, (2021). Genetic diversity assessment of ancient Mulberry (Morus spp.) in Lebanon using morphological, chemical and molecular markers (SSR and ISSR). Advances in Horticultural Science, 35, (3), 243- 253. DOI: https://doi.org/10.36253/ahsc8376. 87. KAFKAS, S.; OZGEN, M.; DOGAN, Y.; OZCAN, B.; ERCISLI, S.; and S. SERCE. (2008). Molecular characterization of Mulberry accessions in Turkey by AFLP markes. Journal of the American society for horticultural science, 133, 593- 597. DOI: https://doi.org/10.21273/JASHS.133.4.593. 88. KAR, P. K.; SRIVASTAVA, P. P.; AWASTHI, A. K.; and R. S. URS, (2008). Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.). Tree Genetics and Genomes, 4, (1), 75- 83. 89. KOIDZUMI, G. (1917). Taxonomy and phytogeography of the genus Morus. Bulletin of Sericulture Experimentation Station, Tokyo (Japan), 3, (1), 62. 90. KUMARA, R.; THIMMA, H.; GOWDA, M.; DEVAMANI, M.; and G. RADHAKRISHNA, (2022). Genotypic and phenotypic variability in a clone of mulberry cultivar, Vishala. Sericologia, 62, (1), 9- 17. 91. LANG, A. (1987). Dormancy: a new universal terminology. Horticulture Science, 22, 817- 820. 92. LAN-YEN, C.; KUO-TAN, L.; WEN-JU, Y.; JER-CHIA, C.; and C. MING-WEN, (2014). Phenotypic classification of mulberry (Morus) species in Taiwan using numerical taxonomic analysis through the characterization of vegetative traits and chilling requirements. Scientia Horticulturae, 176, 208- 217. 93. LIDA, Z.; KAIJING, Z.; FEI, Z.; YOUFANG, C.; JIANG, W.; G. YIDON, (2006). Conservation of noncoding microsatellites in plants: implication for gene regulation. BMC Genomics, 7, 323. 94. LJUBOJEVI´C, M.; ŠAVIKIN, K.; ZDUNIC´, G.; BIJELIC´, S.; MRDAN, S.; KOZOMARA, M.; PUŠI´C, M.; and T. C. NARANDŽI´, (2023). Selection of Mulberry Genotypes from Northern Serbia for ‘Ornafruit’ Purposes. Horticulturae, 9, 28. DOI: https://doi.org/10.3390/horticulturae9010028.95. LOPES, M. S.; MENDOCA, D.; SEFC, K. M.; GIL, S. F.; CAMARA, D. A.; and A. MACHADO, (2004). Genetic evidence of intra- cultivar variability within Iberian olive cultivars. Horticulture Science, 39, 1562- 1565. 96. Makhoul, G.; Mahfoud, H.; and H. Baroudi, (2017). Some chemical characteristics of white (Morus alba L.) and black (Morus nigra L.) mulberry phenotypes in Tartus Syria. International Journal of Agriculture & Environmental Science, 4, (2), 54- 63. 97. MANIATIS, T.; FRITSCH, F. E and J. SAMBROOK, (1982). Molecular cloning: Laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor/ NY. 98. MACHII, H.; KOYAMA, A.; and H. YAMANOUCHI, (1999). A list of genetic mulberry resources maintained at national institute of sericulture and entomological sciences. Misc. Publ, Natl, Seric, Entomol, Sci, (Japan), 26, 1- 77. 99. MELKE, A. (2015). The Physiology of Chilling Temperature Requirements for Dormancy Release and Bud-break in Temperate Fruit Trees Grown at Mild Winter Tropical Climate. Journal of Plant Studies, 4, (2), 111- 156. 100. MILLER, P.; LANIER, W.; and S. BRANDT, (2001). Using growth degree days to predict plant stages. Montana State University, 8. 101. MINAMIZAWA, K. (1963). Experimental studies on the sex differentiation in Mulberry. Bull Fac Agric, Tokyo Noko Digaku, 7, (4), 47. 102. MINAMIZAWA, K. (1974). Studies on the mechanism of localized sex differentiation in mulberry, Induction of the localized sex expression in monoecious mulberry twigs by transitional alteration of NAA treatment at mid- growth stage of the shoot. J, Seric, Sci. Jpn, 42, (2), 146- 149. 103. MO, R.; ZHANG, N.; HU, D.; JIN, Q.; LI, J.; DONG, Z.; ZHU, Z.; LI, Y.; ZHANG, C.; and C. YU, (2022). Identification of Phenological Growth Stages of Four Morus Species Based on the Extended BBCH-Scale and Its Application in Fruit Development with Morphological Profiles and Color Characteristics. Horticulturae, 8, 1140. DOI: https://doi.org/10.3390/horticulturae8121140. 104. MOHAN, H.; and V. JAISWAL, (1974). The possible role of ethylene and gibberellins in flower sex differentiation of Cannabis sativa., 8th International Conference on plant Growth Substances (ed.), Y Sumiki, (Hirokawa Publ. Co. Tokyo), 987- 996. 105. NAIK, G. V.; and S. B. DANDIN, (2005). Molecular characterization of some improved and promising mulberry varieties (Morus spp.) of India by RAPD and ISSR markers. Indian Journal of Sericulture, 44, (1), 59- 68.106. NEI, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the national academy of sciences of USA, 70, 3321- 3323. 107. NEPAL, M AND J. PURINTUN, (2008). Systematics of the Genus Morus L. (Moraceae) Taxonomy, Phylogeny and Potential Responses to Climate Change. Thesis. South Dakota. State University, 20. 108. NEPAL, P. M.; MAYFIELD, H. M.; and C. J. FERGUSON, (2012). Identification of Eastern North American Morus (Moraceae) taxonomic status of M. marryana. Phytoneuronm, 26, 1- 6. 109. NEPAL, P.; FERGUSON, J.; and H. MAYFIELD, (2015). Breeding system and sex ratio in mulberries (Morus. Moraceae). J, Bot, Inst, Texas, 9, (2), 383- 395. 110. NURIA, A.; FEDERICO, G.; ANTONIO, C.; and B. LORENZO, (2008). Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Sciencedirect, Environmental and experimental botany. 111. ORHAN, E.; AKIN, M.; EYDURAN, S.; and S. ERCISLI, (2020). Molecular characterization of mulberry genotypes and species in Turkey. Notulae botanicae horticulture agrobotanici Cluj-Napoca, 48, (2), 579- 557. DOI: https://doi.org/10.15835/nbha48211928. 112. ORHAN, E.; ERCISLI, S.; YILDIRIM, S.; G. AGAR, (2007). Genetic variations among mulberry genotypes (Morus alba) as revealed by Random Amplified Polymorphic DNA (RAPD) markers. Plant Systematics and Evaluation, 265, 251- 258. DOI: https://doi.org/10.1007/s00606-007-0525-2 113. ORHAN, O.; and S. ERCISLI, (2010). Genetic relationships between selected Turkish mulberry genotypes (Morus spp.) based on RAPD markers. Genet, Mol, Res, 9, (4), 2176-2183. 114. ORWA. C.; MUTUA, A.; KINDT, R.; JAMNADASS, R.; and A. SIMONS, (2009). Agroforestry database, a tree reference and selection guide version 4 world agroforestry. 115. PERIS, N.; GACHERI, K.; THEOPHILLUS, M.; and N. LUCAS, (2014). Morphological characterization of Mulberry (Morus spp) accessions grown in Kenya. Sustainable agriculture research, 3, (1), 1927- 0518. 116. QIAN, Z.; WU, Z.; HUANG, L.; QIU, H.; WANG, L.; LI, L.; YAO, L.; KANG, K.; QU, J.; WU, Y.; LUO, J.; LIU, J. J.; YANG, Y.; YANG, W.; and D. GOU, (2015). Mulberry fruit prevents lps‐induced nf‐κb/perk/mapk signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci rep, 5, 17348.117. RAMESH, K.; AGGARWAL, D.; UDAYKUMAR, P.; HENDRE, S.; SARKAR, A.; and L. SINGH, (2004). Isolation and characterization of six novel microsatellite markers for mulberry (Morus indica). Molecular ecology notes, 477- 479. 118. RICCIARDI, L.; GIORGI, V.; DE-GIOVANNI, C.; LOTTI, C.; GALLOTTA, A.; and G. FANIZZA, (2002). The genetic of apulian apricot genotypes (Prunus armeniaca L.) assessed using AFLP markers. Cellular and Molecular Biology Letters, 7, 431- 436. 119. RICHARDSON, A.; SEELEY, D.; and R. WALKER, (1974). A model for estimating the completion of rest for 'Redhaven' and 'Elberta' peach trees. HortScience, 9, (33), 1- 332. 120. ROHLF, F. J, (2008). NTSYS-pc: Numerical taxonomy system, ver. 2.20. Exerter Publishing Ltd, Setauket, New York. 121. ROHLF, J, (2002). Numerical Taxonomy and Multivariate Analysis System, NTSYS version. Applied Biostatistics Inc, New York, Story Book, N, Y, USA, 23. 122. RUIZ, D.; CAMPOY, A. J.; J. E. EGEA, (2007). Chilling and heat requirements of apricot cultivars for flowering. Environmental and Experimental Botany, 61, 254- 263. 123. SAITO, T.; and H. TAKAHASHI, (1987). Role of leaves in ethylene induced femaleness in cucumber plants. J, Jpn, Soc Hort, Sci, 55, 445- 454. 124. SALIH, K.; MUSTAFA, O.; YIDIZ, D.; BUREU, O.; SEZAI, E.; and S. SEDAT, (2008). Molecular characterization of mulberry accession in Turkey by AFLP Markers. Journal of American Society for Horticultural Science, 133, (4), 593- 597. 125. SANJAPPA, M, (1989). Geographical distribution and exploration of genus Morus L. (Moraceae), in Genetic resources of mulberry and its utilization. edited by K, Sengupta and S, B. Dandin (Central Sericultural Research and Training Institute, Mysore, India), 4- 8. 126. SAURE, C. (1985). Dormancy release in deciduous fruit trees. Horticultural Reviews, 7, 239- 299. 127. SEIF- EL-YAZAL, M, (2019). Impact of chilling requirement on budburst, floral development and hormonal level in Buds of early and late apple varieties (Malus sylvestris, Mill) under natural conditions. Journal of Horticulture and Plant Research, 2624- 814X, (8), 1- 11. 128. SELAK, V. G.; GORETA-BAN, S.; and S. PERICA, (2018). Onset of flowering in olive cultivars in relation to temperature. Acta Hortic, 12, (29), 127- 134. 129. SRIVASTAVA, P.; VIJAYAN, K.; ARAVIND, A.; and B. SARATCHANDRA. (2004). Genetic analysis of Morus alba through RAPD and ISSR markers. Indian Journal of Biotechnology, 3, 527- 532.130. SHANNON, C. E.; and W. WEAVER (1949). The mathematical theory of communication. University of Illinois press, Urbana. 131. SHARMA, A.; SHARMA, R.; H, MACHII, (2000). Assessment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers. Theoretical and Applied Genetics, 101, 1049- 1055. DOI: https://doi.org/10.1007/s001220051579. 132. SHAULTOUT, A. D.; and G. R. UNRATH, (1983). Rest completion prediction model for Starkrimson delicious apples. J, Amer, Soc, Hort, Sci, 108, 957- 961. 133. SHIVASHANKAR, M, (2015). Study on RAPD Molecular Distinction in Mulberry Varieties. International Journal of Current Microbiology and Applied Sciences, 4, (4), 1097- 1105. 134. SKIRVIN, M.; OTTERBACHER, G.; KUNKEL, K.; CZUBAK, P.; and A. YIESLA, (1998). Application of a Chilling Hour Climatology to Predict Fruit Crop growth in Illinois. University of Illinois at Urbana-Champaign. 135. SMITH, S. (1997). Cultivar identification and varietal protection, In, Anolles, G. C.; and M, Gresshoff Eds, DNA marker protocols, applications, and overviews. Wiley-Liss, Inc. United States of America, 283- 285. 136. SUNIRMAL, S.; KUNTAL, G.; SATABDI, A.; KWANG, P. K.; and S. L. YANG, (2018). Estimating genetic conformism of Korean mulberry cultivars using Random amplified polymorphic DNA and inter-simple sequence repeat profiling. Journal of plants, 10, 3390. 137. TAIZ, L.; and E. ZEIGER, (2006). Plant physiology 4th edition. Sinauer Associates, Inc, USA. 138. TAN, C., WU, Y., TALIAFERRO, C.M. BELL, E., MARTIN, L., and W. SMITH, (2014). Development and characterization of genomic SSR markers in Cynodon transvaalensis Burtt-Davy. Molecular Genetics and Genomics, 289, 523 -531. DOI: https://doi.org/10.1007/s00438-014-0829-1. 139. THABTI, I.; ELFALLEH, W.; TLILI, N.; ZIADI, M.; CAMPOS, M. G.; and A. FERCHICHI, (2014). phenols, flavonoids, and antioxidant and antibacterial activity of leaves and stem bark of Morus species. Int, J, Food prop, 17, 842- 854. 140. THOMAS, D. T, (2004). In vitro modification of sex expression in mulberry (Morus alba) by ethrel and silver nitrate. Plant cell and organ culture, 77, 277- 281. 141. THUMILAN, M.; and S. DANDIN, (2009). Genetic analysis of diploid and colchi-tetraploid mulberry (Morus indica and Morus alba) by molecular and morphological markers. International Journal of Plant Breed, 3, (1), 58- 64.142. TIKADAR, A.; VIJAYAN, K.; RAGHUNATH, M. K.; CHAKROBORTI, P. S.; ROY, N. B.; and P. KUMAR, (1995). Studies on sexual variation in mulberry (Morus spp.). Euphytica, 84, (2), 115- 120. 143. TUTIN GT. MORUS L. IN: TUTIN, G, T; BURGES NA; CHATER, AO; EDMONDSON, JR; HEYWOOD, VH; MOORE, DM; VALENTINE, DH; WALTERS, SM; WEBB, DA, editors. Flora Europe, psilotaceae to plantaceae. 2nd ed, vol 1, Australia: Cambridge university press. 144. TREBITSH, T.; RIOV, J.; and J. RUDICH, (1987). Auxin, biosynthesis of ethylene and sex expression in cucumber (Cucumis sativus). Plant Growth Regul, 5, 105- 113. 145. UN-HYANG, H.; JUNGSAM, K.; SONG, CH.; JONG, K.; and K. MYONG, (2021). Molecular distinction among mulberry (Morus spp.) species and varieties cultivated in dpr Korea. 07 June 2021, PREPRINT (Version 1) available at Research Square DOI:Https://doi.org/10.21203/rs.3.rs-482675/v1. 146. UPOV, (2019). International union for the protection of new varieties of plants Geneva Tg/ Morus, Japan guidelines for the conduct of tests for distinctness, uniformity and stability. 147. VENKATESH, K. R. and; C. CHAUHAN, (2011). Biochemical constituents of different parts of mulberry genotypes. International journal of agriculture sciences, 3, (2), 90- 96. 148. VIJAYAN, K, (2003). Genetic relationships of Japanese and Indian mulberry (Morus spp.) genotypes revealed by DNA fingerprinting. Plant System and Evaluation, 243, 221- 232. DOI: https://doi.org/10.1007/s00606-003-0078-y. 149. VIJAYAN, K. B.; SRIVASTAVA, P. P.; and A. K. AWASTHI, (2004a). Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome, 47, 439- 448. Doi: https://doi.org/10.1139/g03-147. 150. VIJAYAN, K.; KARP, P. K.; TIKADAR, A.; SRIVASTAVA, P. P.; AWASTHI, A. K.; THANGAVELU, K.; and B. SARATCHANDRA, (2004b). Molecular evaluation of genetic variability in wild population of mulberry (Morus serrata Roxb.). Plant Breed, 123, (6), 568- 572. DOI: https://doi.org/10.1111/j.1439-0523.2004.01035.x. 151. VIJAYAN, K.; and M. S. CHATTERJEE, (2003). ISSR profiling of Indian cultivars of mulberry (Morus spp) and its relevance to breeding programs. Euphytica, 131, 53- 63. DOI: https://doi.org/10.1023/A:1023098908110. 152. VIJAYAN, K.; NAIR, C. V.; and S. N. CHATTERJEE, (2005). Molecular characterization of mulberry genetic resources indigenous to India. Genetic Resources and Crop Evolution, 52, 77- 86. DOI: https://doi.org/10.1007/s10722-005-0288-y.153. VIJAYAN, K.; NAIR, C. V.; and S. N. CHATTERJEE, (2009). Diversification of mulberry (Morus indica var. S36), a vegetatively propagated tree species. Caspian J, Env, Sci, 7, (1), 23- 33. 154. VIJAYAN, K.; SRIVATSAVA, P. P.; NAIR, C. V.; AWASTHI, A. K.; TIKADER, A.; SREENIVASA, B.; and S. R. URS, (2006). Molecular characterization and identification of markers associated with yield traits in mulberry using ISSR markers. Plant Breeding, 125, 298- 301. 155. VOSSEN, P. M.; and D. SILVER, (2000). Growing temperate tree fruit and nut crops in the home garden. University of California Research and Information center. 156. WANG, Z. W. and D, M. YU, (2001). AFLP analysis of genetic background of polyploid breeding materials of mulberry. Acta Sericol, Sin, 27, (3), 170- 176. 157. WANG, Z., ZHANG, Y., DAI, F., LUO, G., XIAO , G., TANG, C. (2017) Genetic diversity among mulberry genotypes from seven countries. Physiology and Molecular Biology of Plants, 23, (2), 421- 427. DOI: https://doi.org/10.1007/s12298-017-0427-x. 158. WANI, A. S,.; ASHRAF BHAT, M.; MALIK1, G. N.; FAROOQ, A.; ZAKI, M. R.; WANI, W.; and K. MUSHTAQ-BHAT, (2014). Genetic diversity and relationship assessment among mulberry (Morus spp) genotypes by simple sequence repeat (SSR) marker profile. African journal of Biotechnology, 12, (21), 3181- 3187. 159. WANI, A. S.; BHAT, M. A.; MALIK, G. N.; AFIFA, S.; KAMILI, M. R.; MIR, S.; BHAT, A.; and WANI, S.; RAZVI, M.; AKHTAR, S.; and K. A. BHAT, (2010). Molecular Markers and Their Role In Mulberry Improvement. International Journal of Current Research, 4, 020- 024. 160. WANI, S.; ASHRAFBHAT, M.; MALIK, G.; ZAKI, F.; MIR, M.; WANI, N.; and K. MUSHTAQBHAT, (2013). Genetic diversity and relationship assessment among mulberry (Morus spp) genotypes by simple sequence repeat (SSR) marker profile. African journal of biotechnology, 12, (21), 3181- 3187. DOI: https://doi.org/10.5897/AJB2013.12091. 161. WAREING, P. F.; and J. D. PHILLIPS, (1983). Growth and differentiation in plant, 3rd ed, pergamon press. Oxford. 162. WEIGUO, Z.; RONGJUN, F.; YILE, P.; YONGHIA, Y.; JONG, W. C.; II-MIN, C.; and J. P. YONG, (2009). Analysis of genetic relationships of mulberry (Morus L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. African Journal of Biotechnology, 8, (11), 2604- 2610. 163. WEINBERGER, H, (1950). Chilling requirements of peach varieties. Proc, Am, Soc, Hortic, Sci, (56), 122- 128.164. WJHANI, Y, (2004). Genetic studies on the biodiversity of local and wild Syrian wheat using modern biotechnological techniques. Thesis submitted in partial fulfillment for the requirements of the degree of doctor of philosophy in agriculture scince (genetics), Department of genetics, Cairo University, faculty of agriculture, 119. 165. XINGFU, X, (1997). Effect of gibberellin on flower bud formation in mulberry tree. Seric, Sci, Japan, 66, (6), 409- 412. 166. YAMANOUCHI, H.; KOYAMA, A.; AND H. MACHII, (2017). Nuclear DNA amounts of mulberries (Morus spp.) and related species. JARO. 51, (4), 299- 307. DOI: https://doi.org/10.6090/jarq.51.299. 167. YEH, F. C.; BOYLE, T.; YANG. R. C.; and Y. E. ZMJX, (2000). Popgene, version 1.32. Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada. 168. YILMAZ, U. K.; ZENGIN, Y.; ERCISLI, S.; DEMIRTAS, N. M.; KAN, T.; and R. A. NAZLI, (2012). Morphological diversity on fruit among some selected mulberry genotypes from Turkey. Journal of Animal and Plant Sciences, 22 (1), 211- 214. 169. YIN. T.; and J. A. QUINN, (1995). Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am, J, Bot, 82, 1537- 1546. 170. ZHANG, L.; ZHAO, W.; GUO-CHEN, J. B.; and Q. SHENG, (2011). Analysis of genetic diversity and construction of core collection of local mulberry varieties from Shanxi province based on ISSR marker. African journal of biotechnology, 10, (40), 7756- 7765. DOI: https://doi.org/10.1016/j.scienta.2007.07.017. 171. ZHANG, H.; and Z. F. MA, (2018). phytochemical and pharmacological properties of capparis spinosa as a medicinal plant. Nutrients, 10, (2), 116. 172. ZHAO, G; ZHOU, H; MIAO, X; WANG, B.; ZHANG, L; PAN, Y. L; and P, HUANG, (2006). Genetic relatedness among cultivated and wild mulberry (Moraceae: Morus) as revealed by inter-simple sequence repeat (ISSR) analysis in China. Canadian Journal of Plant Science, 86, 251- 257. DOI: https://doi.org/10.4141/P04-110. 173. ZHAO, W.; ZHOU, Z.; MIAO, X.; ZHANG, Y.; WANG, S.; HUANG, J.; XIANG, H.; PAN, Y.; and Y. HUANG. (2007). A comparison of genetic variation among wild and cultivated Morus species (Moraceae: Morus) as revealed by ISSR and SSR markers. Biodiversity and conservation, 16, 275- 290. DOI: https://doi.org/10.1007/s10531-005-6973-5.
Type
Thesis

2024-09-10
EndNote
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org