Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties
2002
Gomes, Manuela E. | Godinho, J. S. | Tchalamov, D. | Cunha, A. M. | Reis, R. L.
http://www.sciencedirect.com/science/journal/09284931
Show more [+] Less [-]An ideal tissue engineering scaffold must be designed from a polymer with an adequate degradation rate. The processing technique must allow for the preparation of 3-D scaffolds with controlled porosity and adequate pore sizes, as well as tissue matching mechanical properties and an appropriate biological response. This communication revises recent work that has been developed in our laboratories with the aim of producing 3-D polymeric structures (from starch-based blends) with adequate properties to be used as scaffolds for bone tissue engineering applications. Several processing methodologies were originally developed and optimised. Some of these methodologies were based on conventional melt-based processing routes, such as extrusion using blowing agents (BA) and compression moulding (combined with particulate leaching). Other developed technologies included solvent casting and particle leaching and an innovative in situ polymerization method. By means of using the described methodologies, it is possible to tailor the properties of the different scaffolds, namely their degradation, morphology and mechanical properties, for several applications in tissue engineering. Furthermore, the processing methodologies (including the blowing agents used in the melt-based technologies) described above do not affect the biocompatible behaviour of starch-based polymers. Therefore, scaffolds obtained from these materials by means of using one of the described methodologies may constitute an important alternative to the materials currently used in tissue engineering.
Show more [+] Less [-]Bibliographic information
This bibliographic record has been provided by Universidade do Minho UNMINHO