AGRIS - International System for Agricultural Science and Technology

Predicting preterm birth through vaginal microbiota, cervical length, and WBC using a machine learning model

2022

Sunwha Park | Jeongsup Moon | Nayeon Kang | Young-Han Kim | Young-Ah You | Eunjin Kwon | AbuZar Ansari | Young Min Hur | Taesung Park | Taesung Park | Young Ju Kim


Bibliographic information
Frontiers in Microbiology
Volume 13 ISSN 1664-302X
Publisher
Frontiers Media S.A.
Other Subjects
Cervicovaginal fluid; 16s ribosomal rna metagenome sequencing; Preterm birth; Vaginal microbiome
Language
English

2024-12-11
DOAJ
Data Provider
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org