FAO AGRIS - International System for Agricultural Science and Technology

AI-powered detection and quantification of Post-harvest Physiological Deterioration (PPD) in cassava using YOLO foundation models and K-means clustering

Gomez Ayalde, Daniela | Giraldo Londono, Juan Camilo | Quiroga Mosquera, Audberto | Luna-Melendez, Jorge Luis | Gimode, Winnie | Tran, Thierry | Zhang, Xiaofei | Selvaraj, Michael Gomez


Bibliographic information
Plant Methods
Volume 20 ISSN 1746-4811
Publisher
BioMed Central
Language
English
License
Open Access, CC-BY-NC-ND-4.0
Type
Journal Article; Journal Part
Source
Gomez Ayalde, D.; Giraldo Londono, J.C.; Quiroga Mosquera, A.; Luna-Melendez, J.L.; Gimode, W.; Tran, T.; Zhang, X.; Selvaraj, M.G. (2024) AI-powered detection and quantification of Post-harvest Physiological Deterioration (PPD) in cassava using YOLO foundation models and K-means clustering. Plant Methods 20: 178 . ISSN: 1746-4811
Corporate Author
CGIAR Trust Fund

2024-12-20
2025-02-25
MODS
Links
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]