AGRIS - International System for Agricultural Science and Technology

Carta ex Machina: Testing object-based machine learning and unsupervised classification in land use change detection mapping in the semi-arid governorate of Sidi Bouzid, Tunisia

2021

Havnsgaard Paludan, Kristian Emil

AGROVOC Keywords

Bibliographic information
Publisher
Lunds universitet/Institutionen för naturgeografi och ekosystemvetenskap
Other Subjects
Random forest classification; Semi-arid agriculture; Irrigation mapping; Earth and environmental sciences; Landsat mss; Landsat tm; Object-based classification; Geobia; Isodata cluster classification; Change detection
Language
English
Format
application/pdf
Type
M2

2024-12-20
Dublin Core
Data Provider

This bibliographic record has been provided by Lund University

Discover this data provider's collection in AGRIS

Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]