Short-term optimal operation of water systems using ensemble forecasts
2014
Raso, L. | Schwanenberg, D. | van de Giesen, N.C. | van Overloop, P.J. | Delft University of Technology (TU Delft) | Gestion de l'Eau, Acteurs, Usages (UMR G-EAU) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD [Occitanie]) | DELTARES FOUNDATION DELFT NLD ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Universität Duisburg-Essen = University of Duisburg-Essen [Essen]
[Departement_IRSTEA]Eaux [TR1_IRSTEA]GEUSI
Show more [+] Less [-]International audience
Show more [+] Less [-]English. Short-term water system operation can be realized using Model Predictive Control (MPC). MPC is a method for operational management of complex dynamic systems. Applied to open water systems, MPC provides integrated, optimal, and proactive management, when forecasts are available. Notwithstanding these properties, if forecast uncertainty is not properly taken into account, the system performance can critically deteriorate.Ensemble forecast is a way to represent short-term forecast uncertainty. An ensemble forecast is a set of possible future trajectories of a meteorological or hydrological system. The growing ensemble forecasts' availability and accuracy raises the question on how to use them for operational management.The theoretical innovation presented here is the use of ensemble forecasts for optimal operation. Specifically, we introduce a tree based approach. We called the new method Tree-Based Model Predictive Control (TB-MPC). In TB-MPC, a tree is used to set up a Multistage Stochastic Programming, which finds a different optimal strategy for each branch and enhances the adaptivity to forecast uncertainty. Adaptivity reduces the sensitivity to wrong forecasts and improves the operational performance.TB-MPC is applied to the operational management of Salto Grande reservoir, located at the border between Argentina and Uruguay, and compared to other methods.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Institut national de la recherche agronomique