Informal Settlements Extraction and Fuzzy Comprehensive Evaluation of Habitat Environment Quality Based on Multi-Source Data
2025
Zanxian Yang | Fei Yang | Yuanjing Xiang | Haiyi Yang | Chunnuan Deng | Liang Hong | Zhongchang Sun
The United Nations Sustainable Development Goal (SDG) 11.1 emphasizes improving well-being, ensuring housing security, and promoting social equity. Informal settlements, one of the most vulnerable groups, require significant attention due to their dynamic changes and habitat quality. These areas limit the ability to comprehensively capture spatial heterogeneity and dynamic shifts in regional sustainable development. This study proposes an integrated approach using multi-source remote sensing data to extract the spatial distribution of informal settlements in Mumbai and assess their habitat environment quality. Specifically, seasonal spectral indices and texture features were constructed using Sentinel and SAR data, combined with the mean decrease impurity (MDI) indicator and hierarchical clustering to optimize feature selection, ultimately using a random forest (RF) model to extract the spatial distribution of informal settlements in Mumbai. Additionally, an innovative habitat environment index was developed through a Gaussian fuzzy evaluation model based on entropy weighting, providing a more robust assessment of habitat quality for informal settlements. The study demonstrates that: (1) texture features from the gray level co-occurrence matrix (GLCM) significantly improved the classification of informal settlements, with the random forest classification model achieving a kappa coefficient above 0.77, an overall accuracy exceeding 0.89, and F1 scores above 0.90; (2) informal settlements exhibited two primary development patterns: gradual expansion near formal residential areas and dependence on natural resources such as farmland, forests, and water bodies; (3) economic vitality emerged as a critical factor in improving the living environment, while social, natural, and residential conditions remained relatively stable; (4) the proportion of highly suitable and moderately suitable areas increased from 65.62% to 65.92%, although the overall improvement in informal settlements remained slow. This study highlights the novel integration of multi-source remote sensing data with machine learning for precise spatial extraction and comprehensive habitat quality assessment, providing valuable insights into urban planning and sustainable development strategies.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Directory of Open Access Journals