More questions than answers: insights into potential cysteine-rich receptor-like kinases redox signalling in Arabidopsis
2025
Martin-Ramirez, Sergio | Stouthamer, Jente | Smakowska-Luzan, Elwira
Over the past few decades, significant advancements have been made in understanding how plasma-membrane localised receptor kinases (RKs) detect signals and activate responses to various stimuli. Numerous examples of ligand-induced receptor activation mechanisms and their downstream consequences have been characterised in detail. The crucial role of post-translational modifications (PTMs), such as the phosphorylation of receptor kinases, has been demonstrated concerning different cellular responses. Given the diverse structures and architectures of the extracellular domains (ECDs) of RKs, it is probable that various forms of PTMs also play an essential role in receptor activation, including cysteine oxidative modifications triggered by reactive oxygen species (ROS). The function of cysteine oxidative modifications as functional redox switches that modulate protein structure and function has been extensively studied across various multicellular organisms. Based on biochemical and structural characteristics, the family of cysteine-rich receptor-like kinases (CRK) emerges as excellent candidates for proteins regulated in a redox-dependent manner. This review provides a concise overview of cysteine's biochemical and structural properties in its role as a molecular redox switch. Drawing on the currently available literature, we describe how cysteine-redox signalling is maintained, particularly in plant cells. We further focus on extracellular ROS perception and the role of CRKs as promising candidates for ROS sensors in Arabidopsis thaliana. We discuss the structural and biochemical properties of CRKs, their involvement in plant growth and defence processes, and our perspective on why CRKs could be key components of the ROS sensing machinery or ROS sensors, especially regarding the dimerization abilities of CRKs. Finally, we highlight the current challenges in identifying and quantifying cysteine oxidative modifications and propose methods for detecting ROS-modified cysteines that may be promising for investigating the role of CRKs in extracellular ROS perception and signalling.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Wageningen University & Research