Espectrômetro Vis-NIR portátil e uso da técnica de machine learning para avaliação do teor de água de sementes de catingueira-verdadeira (Cenostigma pyramidale (Tul.) Gagnon & G.P.Lewis).
2024 | 2025
FERREIRA, M. A. R. | GOMES, R. A. | ALVES, J. da S. | FREITAS, S. T. de | DANTAS, B. F. | MARIA APARECIDA RODRIGUES FERREIRA, UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA; RAQUEL ARAÚJO GOMES, UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA; JASCIANE DA SILVA ALVES, UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO; SERGIO TONETTO DE FREITAS, CPATSA; BARBARA FRANCA DANTAS, CPATSA.
A avaliação do teor de água (TA) permite a escolha dos procedimentos mais apropriados para garantir a vida útil das sementes. A utilização do espectrômetro Vis-NIR para avaliar TA das sementes permite que, antes e durante a coleta, já se tenha o conhecimento inicial desta característica sem a destruição do material, como ocorre no método padrão. Objetivou-se com este estudo desenvolver um modelo para a avaliação do TA de sementes utilizando-se um espectrômetro Vis-NIR portátil e comparar três algoritmos de machine learning. As sementes de catingueira- verdadeira de diferentes populações foram hidratadas (atmosfera úmida) ou desidratadas (sílica-gel) para a formação de sublotes de diferentes TA. Para avaliação espectral do TA das sementes, foi realizada a leitura individual das sementes com espectrômetro portátil F-750 (Felix Instruments, EUA) para obtenção do TA de referência, a partir do método tradicional adaptado para sementes individuais. Foi realizada a validação externa e interna do modelo a partir da divisão do conjunto de dados para as etapas de treinamento (70%), com o emprego do método da validação cruzada, com dez dobras, e teste (30%). Os dados espectrais foram processados no software Weka 3.8.6. Os algoritmos discriminativos aplicados foram dos grupos function (Support Vector Machine e Multilayer Perceptron) e trees (Random Forest). Os algoritmos avaliados obtiveram coeficientes de correlação de calibração (Rc) e de predição (Rp) acima de 0,80. As raízes do erro quadrático médio de calibração (RMSEC), predição (RMSEP) foram abaixo de 5,3. O algoritmo Multilayer Perceptron demonstrou os melhores resultados com Rc= 0,88, Rp=0,92, RMSEC=4,14 e RMSEP=3,82, sendo o melhor algoritmo para predição do TA das sementes. Diante disso, o uso da espectroscopia do infravermelho com aplicação de algoritmo pode ser utilizado para predição do TA de sementes nativas florestais.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Empresa Brasileira de Pesquisa Agropecuária