FAO AGRIS - International System for Agricultural Science and Technology

Coupling Process-Based Models and Machine Learning Algorithms for Predicting Yield and Evapotranspiration of Maize in Arid Environments

Attia, Ahmed | Govind, Ajit | Qureshi, Asad Sarwar | Feike, Til | Rizk, Mosa Sayed | Shabana, Mahmoud Mohamed Abd ElHay | Kheir, Ahmed M.S.

AGROVOC Keywords

Bibliographic information
Publisher
MDPI AG
Other Subjects
Hyperparameters tuning; Dssat models; Super learner; Feature importance; Lasso regression; Xgboost; Random forest
Language
English
Format
application/pdf
License
Open Access
Type
Journal Article; Journal Part
Source
Ahmed Attia, Ajit Govind, Asad Sarwar Qureshi, Til Feike, Mosa Sayed Rizk, Mahmoud Mohamed Abd ElHay Shabana, Ahmed M. S. Kheir. (12/11/2022). Coupling Process-Based Models and Machine Learning Algorithms for Predicting Yield and Evapotranspiration of Maize in Arid Environments. WATER, 14 (22).

2025-07-17
2025-11-19
Dublin Core
Lookup at Google Scholar
If you notice any incorrect information relating to this record, please contact us at [email protected]