Seasonal Variation in Soil Greenhouse Gas Emissions at Three Age-Stages of Dawn Redwood (Metasequoia glyptostroboides) Stands in an Alluvial Island, Eastern China
2016
Shan Yin | Xianxian Zhang | Jukka Pumpanen | Guangrong Shen | Feng Xiong | Chunjiang Liu
Greenhouse gas (GHG) emissions are an important part of the carbon (C) and nitrogen (N) cycle in forest soil. However, soil greenhouse gas emissions in dawn redwood (Metasequoia glyptostroboides) stands of different ages are poorly understood. To elucidate the effect of plantation age and environmental factors on soil GHG emissions, we used static chamber/gas chromatography (GC) system to measure soil GHG emissions in an alluvial island in eastern China for two consecutive years. The soil was a source of CO2 and N2O and a sink of CH4 with annual emissions of 5.5–7.1 Mg C ha−1 year−1, 0.15–0.36 kg N ha−1 year−1, and 1.7–4.5 kg C ha−1 year−1, respectively. A clear exponential correlation was found between soil temperature and CO2 emission, but a negative linear correlation was found between soil water content and CO2 emission. Soil temperature had a significantly positive effect on CH4 uptake and N2O emission, whereas no significant correlation was found between CH4 uptake and soil water content, and N2O emission and soil water content. These results implied that older forest stands might cause more GHG emissions from the soil into the atmosphere because of higher litter/root biomass and soil carbon/nitrogen content compared with younger stands.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute