Shear Wave Velocity Estimation for Shale with Preferred Orientation Clay Minerals
2025
Bing Zhang | Cai Liu | Zhiqing Yang | Yao Qin | Mingxing Li
Accurate shear wave velocity is important for shale reservoir exploration and characterization. However, the effect of the ubiquitous preferred orientation of clay minerals on the velocities of shale has rarely been considered in existing S-wave velocity estimation methods, resulting in limited accuracy of the estimation method. In this study, a S-wave velocity estimation method is proposed for shale while considering the effect of the preferred orientation of clay. First, a compaction model is built by taking the effects of the orientation distribution of clay and the aspect ratio of pores into account. Then, the compaction model is utilized in a workflow to obtain the model parameters by fitting the estimated P-wave velocity with the bedding-normal P-wave velocity from well logging. Finally, the S-wave velocity is estimated using the compaction model and calculated model parameters. The proposed method is verified by laboratory data and successfully applied to a shale gas reservoir. The result shows that the root mean square error almost halves compared with the Xu&ndash:White model. Additionally, the correlation coefficient also improves. The improvement in S-wave velocity estimation indicates that the effect of the preferred orientation of clay on the velocities of shale is effectively corrected. The proposed method improves the accuracy of velocity modeling and reservoir characterization for shale.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute