Power Assessment and Performance Comparison of Wind Turbines Driven by Multivariate Environmental Factors
2025
Bubin Wang | Bin Zhou | Denghao Zhu | Mingheng Zou | Zhao Rao | Haoxuan Luo | Weihao Ji
The increasing deployment of turbines installed offshore is critical for sustainable energy development, yet accurate performance assessment remains challenging due to complex environmental influences, diverse turbine control strategies, and issues with data quality. Traditional performance metrics and power curve models often fail to provide reliable cross-turbine comparisons because they neglect multivariate environmental factors and turbine-specific biases. To address these limitations, this study develops a novel multivariate environmental factor-driven power assessment framework employing segmented long short-term memory (LSTM) models. A hybrid data cleaning method, combining bidirectional quartile analysis with the power curtailment detection, is proposed to effectively identify outliers, including subtle anomalies within typical data ranges. Samples are segmented based on rated wind speed to reflect differences in control strategies, and turbine-specific operational parameters are excluded to ensure unbiased comparisons among turbines. The proposed method achieves substantial improvements in predictive accuracy, with decreases of 9.39% in mean absolute error (MAE) and 11.75% in root mean square error (RMSE), compared to conventional binning approaches. When applied to three 5.5 MW offshore wind turbines, the proposed method reveals significant differences among the units. Turbine A demonstrates the highest performance, while turbines B and C exhibit reductions of 14.35% and 8.29%, respectively. Operational state analysis shows that turbine B experiences substantially longer maintenance durations, indicating severe faults that adversely affect its operational reliability and power output. These findings provide valuable insights for maintenance prioritization and performance benchmarking among wind turbines.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute