Study on Quantifying Soil Thermal Imbalance in Shallow Coaxial Borehole Heat Exchangers
2025
Rujie Liu | Wei He | Chaohui Zhou | Yue Hu | Yuce Liu | Tao Han | Yongqiang Luo | Meng Wang
The bore field in ground source heat pump (GSHP) systems usually encounters thermal accumulation in long-term operation, but there is no quantitative index evaluating this process and its magnitude. A heat accumulation evaluation metric has been proposed, based on the linear trend Slope (°:C/a) of the curve of soil temperature variation. Using this metric, the influence of various factors on soil temperature has been quantitatively analyzed. The results indicate that, under constant heating durations, each 10-day extension of cooling periods leads to an increase of 0.038 °:C/a in soil temperature. Extending the recovery period within an annual cycle facilitates soil self-recovery and mitigates subsurface thermal accumulation. Increasing the spacing between boreholes effectively reduces thermal interference, whereas a greater number of boreholes exacerbates thermal accumulation. Deepening vertical boreholes from 100 m to 200 m reduces the average annual soil temperature increase by 0.1076 °:C. Appropriately increasing backfill thermal conductivity enhances heat exchange efficiency and suppresses thermal accumulation. Higher water flow rates result in logarithmic increases in the evaluation metric, thereby intensifying soil thermal accumulation. Intermittent operation extends recovery periods, thereby alleviating soil thermal imbalance. Under balanced cooling and heating loads, increasing the system lifespan from 10 a to 30 a reduces the evaluation metric by 47.2%.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute