Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco
2025
Runze Song | Haoyu Liu | Yueyang Hu | Man Zhang | Wenyi Sheng
Aiming to address the problems of asynchronous acquisition time of multiple sensors in the crop phenotype acquisition system and high cost of the acquisition equipment, this paper developed a low-cost crop phenotype synchronous acquisition system based on the PTP synchronization protocol, realizing the synchronous acquisition of three types of crop data: visible light images, thermal infrared images, and laser point clouds. The paper innovatively proposed the Difference Structural Similarity Index Measure (DSSIM) index, combined with statistical indicators (average point number difference, average coordinate error), distribution characteristic indicators (Charm distance), and Hausdorff distance to characterize the stability of the system. After 72 consecutive hours of synchronization testing on the timing boards, it was verified that the root mean square error of the synchronization time for each timing board reached the ns level. The synchronous trigger acquisition time for crop parameters under time synchronization was controlled at the microsecond level. Using pepper as the crop sample, 133 consecutive acquisitions were conducted. The acquisition success rate for the three phenotypic data types of pepper samples was 100%, with a DSSIM of approximately 0.96. The average point number difference and average coordinate error were both about 3%, while the Charm distance and Hausdorff distance were only 1.14 mm and 5 mm. This system can provide hardware support for multi-parameter acquisition and data registration in the fast mobile crop phenotype platform, laying a reliable data foundation for crop growth monitoring, intelligent yield analysis, and prediction.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Directory of Open Access Journals