Larval Dispersal and Connectivity of Bathymodiolus azoricus (Cosel & Comtet, 1999) at the Mid-Atlantic Ridge: Implications for Spatial Management of Hydrothermal Vent Communities
2025
Ana Colaço | Manuela Juliano
Hydrothermal vents are &ldquo:oases&rdquo: of biological productivity and endemicity on the seafloor. Chemosynthetic communities at deep-sea hydrothermal vents are characterized by high abundance and endemism. The distribution of species among these isolated habitats supports regional biodiversity and stability, so understanding the fundamental processes is a key target of conservation. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing the diversity and distributions of vent animals. By combining a biophysical model with biological larvae traits, we quantify potential larval dispersal of vent species via ocean circulation in the Azores Triple Junction. Here we present results from a biophysical model of larval dispersal run for the hydrothermal vent benthic mussel Bathymodiolus azoricus. Several scenarios were implemented, based on similar data sets, although changing values for one or two parameters, such as swimming behaviour and planktonic larvae duration. Results showed that larvae retention is the most common pattern from the Azores Triple Junction vent fields mussel. The Rainbow vent field is rather isolated, being the sink population of the Menez Gwen and Lucky Strike but with a very low number of larvae exchange. Results are discussed in the framework of spatial management to maintain the populations after an impact by natural or human disturbance.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute