Continuous Monitoring of Fire-Induced Forest Loss Using Sentinel-1 SAR Time Series and a Bayesian Method: A Case Study in Paragominas, Brazil
2025
Marta Bottani | Laurent Ferro-Famil | René Poccard-Chapuis | Laurent Polidori
Forest fires, intensified by climate change, threaten tropical ecosystems by accelerating biodiversity loss, releasing carbon emissions, and altering hydrological cycles. Continuous detection of fire-induced forest loss is therefore critical. However, commonly used optical-based methods often face limitations, particularly due to cloud cover and coarse spatial resolution. This study explores the use of C-band Sentinel-1 Synthetic Aperture Radar (SAR) time series, combined with Bayesian Online Changepoint Detection (BOCD), for detecting and continuously monitoring fire-induced vegetation loss in forested areas. Three BOCD variants are evaluated: two single-polarization approaches individually using VV and VH reflectivities, and a dual-polarization approach (pol-BOCD) integrating both channels. The analysis focuses on a fire-affected area in Baixo Uraim (Paragominas, Brazil), supported by field-validated reference data. BOCD performance is compared against widely used optical products, including MODIS and VIIRS active fire and burned area data, as well as Sentinel-2-based difference Normalized Burn Ratio (dNBR) assessments. Results indicate that pol-BOCD achieves spatial accuracy comparable to dNBR (88.2% agreement), while enabling detections within a delay of three Sentinel-1 acquisitions. These findings highlight the potential of SAR-based BOCD for rapid, cloud-independent monitoring. While SAR enables continuous detection regardless of atmospheric conditions, optical imagery remains essential for characterizing the type and severity of change.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute