Genetic Diversity and Risk of Non-Adaptedness in Natural North Moroccan and Planted South Spanish Atlas Cedar
2025
Belén Méndez-Cea | Isabel García-García | David Manso-Martínez | Juan Carlos Linares | Francisco Javier Gallego | Jose Luis Horreo
The Atlas cedar Cedrus atlantica is a relict and endemic conifer from Morocco and Algeria, although plantations may be found in several locations aside from its natural range. Recurrent droughts have been widely related to Atlas cedar dieback, growth decline, and mortality, but the genetic basis of potential adaptive capacity is unknown. We used the double digest restriction-site associated DNA sequencing technique (ddRAD-seq) to describe the genetic structure and variability of Atlas cedar along an aridity gradient in Morocco. Furthermore, we investigated the potential genetic origin of three Spanish plantations, also along an aridity gradient. The obtained single nucleotide polymorphisms (SNPs) were used to perform genotype&ndash:environment associations (GEAs) to define SNPs related to bioclimatic variables of temperature and precipitation. The vulnerability of this species to environmental variations was also estimated by its risk of non-adaptedness (RONA). Population structure showed a divergence between the Moroccan natural stands and some of the Spanish plantations, with each Moroccan nucleus being genetically distinct. The genetic variability was significantly lower in plantations than in natural populations. The drier Spanish plantations (easternmost) were genetically very similar to the driest Moroccan population (southernmost), suggesting that as its origin. A total of 41 loci under selection were obtained with the Moroccan dataset. In relation to temperature and precipitation variables, isothermality showed the highest number of associated loci (10) in GEA studies, and genotype&ndash:phenotype associations (GPAs) showed one locus associated with the Specific Leaf Area. RONA value was higher in the southernmost High Atlas population, where rising temperature was the main driver of expected genetic offset by allele frequency changes under the worst emissions scenario. In contrast, Spanish plantations would need smaller genetic changes to cope with the expected climate change. Likely gene flow from southern to northern areas suggests a latitudinal heading, where Spanish plantations might operate as an assisted migration. Moreover, one locus showed a northern/southern pattern in saplings but not in adults, suggesting a potential latitudinal pattern of selection. Our results are discussed on the basis of their management and conservation.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute