Deep Learning-Based Wind Speed Retrieval from Sentinel-1 SAR Wave Mode Data
2025
Ruixuan Sun | Chen Wang | Zhuhui Jiang | Xiaojuan Kong
Sea surface wind has been listed as an essential climate variable, playing crucial roles in regulating the global and regional weather and climate. Spaceborne synthetic aperture radar (SAR) has demonstrated the advantages in observing the wind field given its all-weather measurement capability. In this study, we present a convolutional neural network (CNN)-based framework for retrieving 10 m wind speed (U10) from Sentinel-1 SAR wave mode (WV) imagery. The model is trained on SAR data acquired in 2017 using collocated ERA5 reanalysis wind vectors as the reference, with final performance evaluated against a temporally independent dataset from 2016 and in situ wind measurements. The CNN approach demonstrates improved retrieval accuracy compared to the conventional CMOD5.N-based result, achieving lower root mean square error (RMSE) and bias across both WV1 and WV2 incidence angle modes. Residual diagnostics show a systematic overestimation at low wind speeds and a slight underestimation at higher wind speeds. Spatial analyses of retrieval bias reveal regional variations, particularly in areas characterized by ocean swell or convective atmospheric activity, highlighting the importance of geophysical features in retrieval accuracy. These results support the viability of deep learning approaches for SAR-based ocean surface wind estimation and suggest a path forward for the development of more accurate, data-driven wind products suitable for both scientific research and operational marine forecasting.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Multidisciplinary Digital Publishing Institute