Mechanisms of Strigolactone-Regulated Abiotic Stress Responses in Plants
2025
Jie Dong | Hailin Fu | Zhenyu Wang | Liwei Zhang | Ziyi Liu | Yulin Hu | Fafu Shen | Wei Wang
Abiotic stresses, such as heat, cold, drought, and salt, pose severe challenges to global agriculture, with climate change exacerbating these threats and intensifying risks to crop productivity and food security. Strigolactones (SLs), a class of phytohormones, play pivotal roles in mediating plant development and enhancing stress resilience. This review highlights the multifaceted mechanisms through which SLs regulate plant responses to abiotic stresses, integrating molecular, physiological, biochemical, and morphological dimensions. Molecularly, SLs regulate the expression of stress-responsive genes, such as those encoding antioxidant enzymes and mitogen-activated protein kinase (MAPK), to enhance plant acclimation and survival under abiotic stress conditions. Moreover, genes involved in SL biosynthesis and signaling pathways are indispensable in these processes. Physiologically and biochemically, SLs improve resilience by modulating photosynthesis, stomatal closure, reactive oxygen species (ROS) metabolism, and osmotic adjustment. Morphologically, SLs modulate leaf morphology, shoot development, and root architecture, enhancing plant stress tolerance. Collectively, SLs emerge as key regulators of plant tolerance to abiotic stresses, offering promising strategies for advancing crop improvement and securing agricultural sustainability in the face of climate change.
Show more [+] Less [-]AGROVOC Keywords
Bibliographic information
This bibliographic record has been provided by Directory of Open Access Journals