Refine search
Results 31-40 of 916
A dataset for sustainability assessment of agroecological practices in a crop-livestock farming system Full text
2021
Jouan, Julia | Carof, Matthieu | Baccar, Rim | Bareille, Nathalie | Bastian, Suzanne | Brogna, Delphine | Burgio, Giovanni | Couvreur, Sébastien | Cupiał, Michał | Dufrêne, Marc | Dumont, Benjamin | Gontier, Philippe | Jacquot, Anne-Lise | Kański, Jarosław | Magagnoli, Serena | Makulska, Joanna | Pérès, Guénola | Ridier, Aude | Salou, Thibault | Sgolastra, Fabio | Szeląg-Sikora, Anna | Tabor, Sylwester | Tombarkiewicz, Barbara | Węglarz, Andrzej | Godinot, Olivier | Sol Agro et hydrosystème Spatialisation (SAS) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Ecole Supérieure des Agricultures (ESA) | Biologie, Epidémiologie et analyse de risque en Santé Animale (BIOEPAR) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] ([FUSAGx]) ; Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège) | Alma Mater Studiorum Università di Bologna = University of Bologna (UNIBO) | University of Agriculture in Krakow | Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Structures et Marché Agricoles, Ressources et Territoires (SMART-LERECO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Information – Technologies – Analyse Environnementale – Procédés Agricoles (UMR ITAP) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Agricultural University of Krakow | European Commission through the Erasmus + program - 2017-1-FR01-KA203-037254 | French Chair of Agroecology
A dataset for sustainability assessment of agroecological practices in a crop-livestock farming system Full text
2021
Jouan, Julia | Carof, Matthieu | Baccar, Rim | Bareille, Nathalie | Bastian, Suzanne | Brogna, Delphine | Burgio, Giovanni | Couvreur, Sébastien | Cupiał, Michał | Dufrêne, Marc | Dumont, Benjamin | Gontier, Philippe | Jacquot, Anne-Lise | Kański, Jarosław | Magagnoli, Serena | Makulska, Joanna | Pérès, Guénola | Ridier, Aude | Salou, Thibault | Sgolastra, Fabio | Szeląg-Sikora, Anna | Tabor, Sylwester | Tombarkiewicz, Barbara | Węglarz, Andrzej | Godinot, Olivier | Sol Agro et hydrosystème Spatialisation (SAS) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Ecole Supérieure des Agricultures (ESA) | Biologie, Epidémiologie et analyse de risque en Santé Animale (BIOEPAR) ; École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] ([FUSAGx]) ; Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich (ULiège) | Alma Mater Studiorum Università di Bologna = University of Bologna (UNIBO) | University of Agriculture in Krakow | Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage [Rennes] (PEGASE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Structures et Marché Agricoles, Ressources et Territoires (SMART-LERECO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Information – Technologies – Analyse Environnementale – Procédés Agricoles (UMR ITAP) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Agricultural University of Krakow | European Commission through the Erasmus + program - 2017-1-FR01-KA203-037254 | French Chair of Agroecology
International audience | This article presents data designed by European researchers who performed a literature review and interpreted the results to determine impact factors of many agroecological practices on a wide variety of sustainability indicators. The impact factors are represented in a matrix that connects practices to indicators. The indicators are related to environmental, economic and social sustainability of a typical European integrated crop-livestock farm. The data are included in the serious game SEGAE to learn agroecology, as described in “SEGAE: a serious game to learn agroecology” [1]. The data can be modified to adapt the game to other agricultural systems. Finally, the data can be re-used in research projects as a basis to assess impacts of agroecological practices.
Show more [+] Less [-]A dataset for sustainability assessment of agroecological practices in a crop-livestock farming system Full text
2021
Jouan, Julia | Carof, Matthieu | Baccar, Rim | Bareille, Nathalie | Bastian, Suzanne | Brogna, Delphine | Burgio, Giovanni | Couvreur, Sébastien | Cupiał, Michał | Dufrêne, Marc | Dumont, Benjamin | Gontier, Philippe | Jacquot, Anne-Lise | Kański, Jarosław | Magagnoli, Serena | Makulska, Joanna | Pérès, Guénola | Ridier, Aude | Salou, Thibault | Sgolastra, Fabio | Szeląg-Sikora, Anna | Tabor, Sylwester | Tombarkiewicz, Barbara | Węglarz, Andrzej | Godinot, Olivier
peer reviewed | This article presents data designed by European researchers who performed a literature review and interpreted the results to determine impact factors of many agroecological practices on a wide variety of sustainability indicators. The impact factors are represented in a matrix that connects practices to indicators. The indicators are related to environmental, economic and social sustainability of a typical European integrated crop-livestock farm. The data are included in the serious game SEGAE to learn agroecology, as described in “SEGAE: a serious game to learn agroecology” [1]. The data can be modified to adapt the game to other agricultural systems. Finally, the data can be re-used in research projects as a basis to assess impacts of agroecological practices.
Show more [+] Less [-]A dataset for sustainability assessment of agroecological practices in a crop-livestock farming system Full text
2021
Jouan, Julia | Carof, Matthieu | Baccar, Rim | Bareille, Nathalie | Bastian, Suzanne | Brogna, Delphine | Burgio, Giovanni | Couvreur, Sébastien | Cupiał, Michał | Dufrêne, Marc | Dumont, Benjamin | Gontier, Philippe | Jacquot, Anne-Lise | Kański, Jarosław | Magagnoli, Serena | Makulska, Joanna | Pérès, Guénola | Ridier, Aude | Salou, Thibault | Sgolastra, Fabio | Szeląg-Sikora, Anna | Tabor, Sylwester | Tombarkiewicz, Barbara | Węglarz, Andrzej | Godinot, Olivier
This article presents data designed by European researchers who performed a literature review and interpreted the results to determine impact factors of many agroecological practices on a wide variety of sustainability indicators. The impact factors are represented in a matrix that connects practices to indicators. The indicators are related to environmental, economic and social sustainability of a typical European integrated crop-livestock farm. The data are included in the serious game SEGAE to learn agroecology, as described in “SEGAE: a serious game to learn agroecology” [1]. The data can be modified to adapt the game to other agricultural systems. Finally, the data can be re-used in research projects as a basis to assess impacts of agroecological practices.
Show more [+] Less [-]A dataset for sustainability assessment of agroecological practices in a crop-livestock farming system Full text
Julia Jouan | Matthieu Carof | Rim Baccar | Nathalie Bareille | Suzanne Bastian | Delphine Brogna | Giovanni Burgio | Sébastien Couvreur | Michał Cupiał | Marc Dufrêne | Benjamin Dumont | Philippe Gontier | Anne-Lise Jacquot | Jarosław Kański | Serena Magagnoli | Joanna Makulska | Guénola Pérès | Aude Ridier | Thibault Salou | Fabio Sgolastra | Anna Szeląg-Sikora | Sylwester Tabor | Barbara Tombarkiewicz | Andrzej Węglarz | Olivier Godinot
This article presents data designed by European researchers who performed a literature review and interpreted the results to determine impact factors of many agroecological practices on a wide variety of sustainability indicators. The impact factors are represented in a matrix that connects practices to indicators. The indicators are related to environmental, economic and social sustainability of a typical European integrated crop-livestock farm. The data are included in the serious game SEGAE to learn agroecology, as described in “SEGAE: a serious game to learn agroecology” [1]. The data can be modified to adapt the game to other agricultural systems. Finally, the data can be re-used in research projects as a basis to assess impacts of agroecological practices. | Sustainability indicators, crop-livestock integration, systems approach, transition management | 40 | 1-6 | 36
Show more [+] Less [-]Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data Full text
2021
Mercier, Audrey | Betbeder, Julie | Denize, Julien | Roger, Jean-Luc | Spicher, Fabien | Lacoux, Jérôme | Roger, David | Baudry, Jacques | Hubert-Moy, Laurence | Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN) ; Université de Nantes (UN)-Université de Nantes (UN) | Forêts et Sociétés (UPR Forêts et Sociétés) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Département Environnements et Sociétés (Cirad-ES) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Centro Agronómico Tropical de Investigación y Enseñanza - Tropical Agricultural Research and Higher Education Center (CATIE) | Institut d'Électronique et des Technologies du numéRique (IETR) ; Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS) | Biodiversité agroécologie et aménagement du paysage (UMR BAGAP) ; Ecole Supérieure des Agricultures (ESA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Ecologie et Dynamique des Systèmes Anthropisés - UMR CNRS 7058 UPJV (EDYSAN) ; Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS) | Université de Rennes 2 (UR2) | Littoral, Environnement, Télédétection, Géomatique (LETG - Rennes) ; Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN) ; Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN) ; Université de Nantes (UN)-Université de Nantes (UN) | This research was funded through the 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders ANR, MINECO, and BELSPO, and was supported by the Kalideos project funded by the CNES, the Zone Atelier Armorique project, and a Ph.D. grant to A. Mercier from the Ministry of Research.
Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data Full text
2021
Mercier, Audrey | Betbeder, Julie | Denize, Julien | Roger, Jean-Luc | Spicher, Fabien | Lacoux, Jérôme | Roger, David | Baudry, Jacques | Hubert-Moy, Laurence | Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN) ; Université de Nantes (UN)-Université de Nantes (UN) | Forêts et Sociétés (UPR Forêts et Sociétés) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Département Environnements et Sociétés (Cirad-ES) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Centro Agronómico Tropical de Investigación y Enseñanza - Tropical Agricultural Research and Higher Education Center (CATIE) | Institut d'Électronique et des Technologies du numéRique (IETR) ; Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS) | Biodiversité agroécologie et aménagement du paysage (UMR BAGAP) ; Ecole Supérieure des Agricultures (ESA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Ecologie et Dynamique des Systèmes Anthropisés - UMR CNRS 7058 UPJV (EDYSAN) ; Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS) | Université de Rennes 2 (UR2) | Littoral, Environnement, Télédétection, Géomatique (LETG - Rennes) ; Littoral, Environnement, Télédétection, Géomatique UMR 6554 (LETG) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN) ; Université de Nantes (UN)-Université de Nantes (UN)-Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Brest (UBO)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN) ; Université de Nantes (UN)-Université de Nantes (UN) | This research was funded through the 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders ANR, MINECO, and BELSPO, and was supported by the Kalideos project funded by the CNES, the Zone Atelier Armorique project, and a Ph.D. grant to A. Mercier from the Ministry of Research.
International audience | Crop monitoring is essential for ensuring food security in a global context of population growth and climate change. Satellite images are commonly used to estimate crop parameters over large areas, and the freely available Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) images are relevant for that purpose combining high temporal resolution and high spatial resolution. For this data article, field surveys were conducted from January to July 2017 in France to sample wheat and rapeseed crop parameters during the entire crops cycle. Phenological stages were identified in 83 wheat fields and 32 rapeseed fields in Brittany and Picardy regions. Moreover, Leaf Area Index (LAI), wet biomass, dry biomass and water content were sampled in three wheat fields and three rapeseed fields in Brittany. We assigned to each field sample 10 spectral bands and 12 vegetation indices from S-2 images and two backscattering coefficients, one backscattering ratio and four polarimetric indicators from S-1 images. This dataset can be used for crop monitoring in other regions, as well as for modelling development.
Show more [+] Less [-]Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data Full text
2021
Mercier, Audrey | Betbeder, Julie | Denize, Julien | Roger, J.-L. (Jean-Luc) | Spicher, Fabien | Lacoux, Jérôme | Roger, David | Baudry, Jacques | Hubert-Moy, Laurence
Crop monitoring is essential for ensuring food security in a global context of population growth and climate change. Satellite images are commonly used to estimate crop parameters over large areas, and the freely available Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) images are relevant for that purpose combining high temporal resolution and high spatial resolution. For this data article, field surveys were conducted from January to July 2017 in France to sample wheat and rapeseed crop parameters during the entire crops cycle. Phenological stages were identified in 83 wheat fields and 32 rapeseed fields in Brittany and Picardy regions. Moreover, Leaf Area Index (LAI), wet biomass, dry biomass and water content were sampled in three wheat fields and three rapeseed fields in Brittany. We assigned to each field sample 10 spectral bands and 12 vegetation indices from S-2 images and two backscattering coefficients, one backscattering ratio and four polarimetric indicators from S-1 images. This dataset can be used for crop monitoring in other regions, as well as for modelling development.
Show more [+] Less [-]Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data Full text
2021
Mercier, Audrey | Betbeder, Julie | Denize, Julien | Roger, Jean-Luc | Spicher, Fabien | Lacoux, Jérôme | Roger, David | Baudry, Jacques | Hubert-Moy, Laurence
Crop monitoring is essential for ensuring food security in a global context of population growth and climate change. Satellite images are commonly used to estimate crop pa- rameters over large areas, and the freely available Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel- 2 (S-2) images are relevant for that purpose combining high temporal resolution and high spatial resolution. For this data article, field surveys were conducted from January to July 2017 in France to sample wheat and rapeseed crop pa- rameters during the entire crops cycle. Phenological stages were identified in 83 wheat fields and 32 rapeseed fields in Brittany and Picardy regions. Moreover, Leaf Area Index (LAI), wet biomass, dry biomass and water content were sampled in three wheat fields and three rapeseed fields in Brittany. We assigned to each field sample 10 spectral bands and 12 vegetation indices from S-2 images and two backscattering coefficients, one backscattering ratio and four polarimetric indicators from S-1 images. This dataset can be used for crop monitoring in other regions, as well as for modelling development.
Show more [+] Less [-]Ex situ and in situ data for endangered livestock breeds in Spain Full text
2021
de Oliveira Silva, Rafael | Cortes Gardyn, Oscar | Hiemstra, Sipke-Joost | Oliveira Marques, Joao, G | Tixier-Boichard, Michèle | Moran, Dominic | The University of Edinburgh | Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM) | Wageningen University and Research [Wageningen] (WUR) | Génétique Animale et Biologie Intégrative (GABI) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | University of Edinburgh's Data-Driven Innovation Chancellors fellowship | UK Research & Innovation (UKRI), Natural Environment Research Council (NERC) | European Project: 677353,H2020,H2020-SFS-2015-2,IMAGE(2016)
Ex situ and in situ data for endangered livestock breeds in Spain Full text
2021
de Oliveira Silva, Rafael | Cortes Gardyn, Oscar | Hiemstra, Sipke-Joost | Oliveira Marques, Joao, G | Tixier-Boichard, Michèle | Moran, Dominic | The University of Edinburgh | Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM) | Wageningen University and Research [Wageningen] (WUR) | Génétique Animale et Biologie Intégrative (GABI) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | University of Edinburgh's Data-Driven Innovation Chancellors fellowship | UK Research & Innovation (UKRI), Natural Environment Research Council (NERC) | European Project: 677353,H2020,H2020-SFS-2015-2,IMAGE(2016)
International audience | Improvements in ex situ storage of genetic and reproductive materials offer an alternative for endangered livestock breed conservation. This paper presents a dataset for current ex situ collections and in situ population for 179 Spanish livestock breeds of seven species, cattle, sheep, pig, chicken, goat, horse and donkey. Ex situ data was obtained via survey administered to 18 functioning gene banks in Spain and relates to the reproductive genetic materials (semen doses) of 210 livestock breeds distributed across the gene banks. In situ data combines CENSUS information with linear regression techniques and relates to the geographic distribution of 179 Spanish autochthonous livestock breeds (2009-2018), and in situ population projections and extinction probabilities (2019-2060). We use a decision variable defining an “acceptable level of risk” that allows decision makers to specify tolerable levels of in situ breed endangerment when taking ex situ collection and storage decisions.
Show more [+] Less [-]Ex situ and in situ data for endangered livestock breeds in Spain Full text
2021
De Oliveira Silva, Rafael | Cortes Gardyn, Oscar | Hiemstra, Sipke Joost | Marques, Joao G Oliveira | Tixier-Boichard, Michèle | Moran, Dominic
Improvements in ex situ storage of genetic and reproductive materials offer an alternative for endangered livestock breed conservation. This paper presents a dataset for current ex situ collections and in situ population for 179 Spanish livestock breeds of seven species, cattle, sheep, pig, chicken, goat, horse and donkey. Ex situ data was obtained via survey administered to 18 functioning gene banks in Spain and relates to the reproductive genetic materials (semen doses) of 210 livestock breeds distributed across the gene banks. In situ data combines CENSUS information with linear regression techniques and relates to the geographic distribution of 179 Spanish autochthonous livestock breeds (2009-2018), and in situ population projections and extinction probabilities (2019-2060). We use a decision variable defining an “acceptable level of risk” that allows decision makers to specify tolerable levels of in situ breed endangerment when taking ex situ collection and storage decisions.
Show more [+] Less [-]Ex situ and in situ data for endangered livestock breeds in Spain Full text
2021
De Oliveira Silva, Rafael | Cortes Gardyn, Oscar | Hiemstra, Sipke Joost | Oliveira Marques, Joao G. | Tixier-Boichard, Michèle | Moran, Dominic
Improvements in ex situ storage of genetic and reproductive materials offer an alternative for endangered livestock breed conservation. This paper presents a dataset for current ex situ collections and in situ population for 179 Spanish livestock breeds of seven species, cattle, sheep, pig, chicken, goat, horse and donkey. Ex situ data was obtained via survey administered to 18 functioning gene banks in Spain and relates to the reproductive genetic materials (semen doses) of 210 livestock breeds distributed across the gene banks. In situ data combines CENSUS information with linear regression techniques and relates to the geographic distribution of 179 Spanish autochthonous livestock breeds (2009-2018), and in situ population projections and extinction probabilities (2019-2060). We use a decision variable defining an “acceptable level of risk” that allows decision makers to specify tolerable levels of in situ breed endangerment when taking ex situ collection and storage decisions.
Show more [+] Less [-]Milk microfiltration process dataset annotated from a collection of scientific papers Full text
2021
Buche, Patrice | Dervaux, Stéphane | Leconte, Nadine | Belna, Maellis | Granger-Delacroix, Manon | Garnier-Lambrouin, Fabienne | Gregory, Gustavo | Barrois, Lucille | Gésan-Guiziou, Geneviève | Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Mathématiques et Informatique Appliquées (MIA Paris-Saclay) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Science et Technologie du Lait et de l'Oeuf (STLO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Société Boccard ; Partenaires INRAE | Sodiaal International, Department of Research and Innovation | Brittany Region (contract no. 16006734, INRA convention 300 01292), from FEDER (contract no. EU000171, INRA convention 30001293) | ANR-19-DATA-0016,DataSusFood,Structurer et Ouvrir les Données pour améliorer la Durabilité des Systèmes Alimentaires(2019)
Milk microfiltration process dataset annotated from a collection of scientific papers Full text
2021
Buche, Patrice | Dervaux, Stéphane | Leconte, Nadine | Belna, Maellis | Granger-Delacroix, Manon | Garnier-Lambrouin, Fabienne | Gregory, Gustavo | Barrois, Lucille | Gésan-Guiziou, Geneviève | Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Mathématiques et Informatique Appliquées (MIA Paris-Saclay) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Science et Technologie du Lait et de l'Oeuf (STLO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Société Boccard ; Partenaires INRAE | Sodiaal International, Department of Research and Innovation | Brittany Region (contract no. 16006734, INRA convention 300 01292), from FEDER (contract no. EU000171, INRA convention 30001293) | ANR-19-DATA-0016,DataSusFood,Structurer et Ouvrir les Données pour améliorer la Durabilité des Systèmes Alimentaires(2019)
International audience | Milk microfiltration process plays a key role in the dairy industry. Crossflow microfiltration of skimmed milk using a membrane with 0.1 µm mean pore size is widely used to fractionate the two main groups of dairy proteins: casein micelles (~150 nm) and serum proteins (~2-15 nm). Retentate, containing mainly casein micelles, is generally used to enrich vat milk for cheese making. Permeate, containing serum proteins, lactose and minerals, is usually ultrafiltered in order to produce protein-rich concentrate with a high nutritional value dedicated to specific populations such as infants and seniors. The great interest in these protein fractions explains the increasing number of microfiltration equipments in the dairy industry. This data article contains data associated with milk microfiltration process experiments and properties of the resulting dairy fractions annotated from a collection of scientific documents. These data are stored in INRAE public repository (see Data accessibility in the Specification Table for direct links to data). They have been structured using MILK MICROFILTRATION ontology and are replicated in @Web data warehouse providing additional querying tools
Show more [+] Less [-]Milk microfiltration process dataset annotated from a collection of scientific papers Full text
2021
Buche, Patrice | Dervaux, Stéphane | Leconte, Nadine | Belna, Maellis | Granger-Delacroix, Manon | Garnier-Lambrouin, Fabienne | Gregory, Gustavo | Barrois, Lucille | Gesan-Guiziou, Geneviève
Milk microfiltration process plays a key role in the dairy industry. Crossflow microfiltration of skimmed milk using a membrane with 0.1 µm mean pore size is widely used to fractionate the two main groups of dairy proteins: casein micelles (~150 nm) and serum proteins (~2-15 nm). Retentate, containing mainly casein micelles, is generally used to enrich vat milk for cheese making. Permeate, containing serum proteins, lactose and minerals, is usually ultrafiltered in order to produce protein-rich concentrate with a high nutritional value dedicated to specific populations such as infants and seniors. The great interest in these protein fractions explains the increasing number of microfiltration equipments in the dairy industry. This data article contains data associated with milk microfiltration process experiments and properties of the resulting dairy fractions annotated from a collection of scientific documents. These data are stored in INRAE public repository (see Data accessibility in the Specification Table for direct links to data). They have been structured using MILK MICROFILTRATION ontology and are replicated in @Web data warehouse providing additional querying tools (https://www6.inrae.fr/cati-icat-atweb/).
Show more [+] Less [-]Food packaging permeability and composition dataset dedicated to text-mining Full text
2021
Lentschat, Martin | Buche, Patrice | Dibie-Barthelemy, Juliette | Menut, Luc | Roche, Mathieu | Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Mathématiques et Informatique Appliquées (MIA Paris-Saclay) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Département Environnements et Sociétés (Cirad-ES) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | IDEX/I-SITE MUSE2 Univ. Montpellier (France)
Food packaging permeability and composition dataset dedicated to text-mining Full text
2021
Lentschat, Martin | Buche, Patrice | Dibie-Barthelemy, Juliette | Menut, Luc | Roche, Mathieu | Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Mathématiques et Informatique Appliquées (MIA Paris-Saclay) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Département Environnements et Sociétés (Cirad-ES) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | IDEX/I-SITE MUSE2 Univ. Montpellier (France)
International audience | This dataset is composed of symbolic and quantitative entities concerning food packaging composition and gas permeability. It was created from 50 scientific articles in English registered in html format from several international journals on the ScienceDirect website. The files were annotated independently by three experts on a WebAnno server. The aim of the annotation task was to recognize all entities related to packaging permeability measures and packaging composition. This annotation task is driven by an Ontological and Terminological Resource (OTR). An annotation guideline was designed in a collective and iterative approach involving the annotators. This dataset can be used to train or evaluate natural language processing (NLP) approaches in experimental fields, such as specialized entity recognition (e.g. terms and variations, units of measure, complex numerical values) or sentence level binary relation (e.g. value to unit, term to acronym).
Show more [+] Less [-]Food packaging permeability and composition dataset dedicated to text-mining Full text
2021
Lentschat, Martin | Buche, Patrice | Dibie-Barthélemy, Juliette | Menut, Luc | Roche, Mathieu
This dataset is composed of symbolic and quantitative entities concerning food packaging composition and gas permeability. It was created from 50 scientific articles in English registered in html format from several international journals on the ScienceDirect website. The files were annotated independently by three experts on a WebAnno server. The aim of the annotation task was to recognize all entities related to packaging permeability measures and packaging composition. This annotation task is driven by an Ontological and Terminological Resource (OTR). An annotation guideline was designed in a collective and iterative approach involving the annotators. This dataset can be used to train or evaluate natural language processing (NLP) approaches in experimental fields, such as specialized entity recognition (e.g. terms and variations, units of measure, complex numerical values) or sentence level binary relation (e.g. value to unit, term to acronym).
Show more [+] Less [-]Dataset of chemical and near-infrared spectroscopy measurements of fresh and dried poultry and cattle manure Full text
2021
Gogé, Fabien | Thuriès, Laurent | Fouad, Youssef | Damay, Nathalie | Davrieux, Fabrice | Moussard, Géraud | Leroux, Caroline | Trupin-Maudemain, Séverine | Valé, Matthieu | Morvan, Thierry | Sol Agro et hydrosystème Spatialisation (SAS) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Université de Montpellier (UM) | Laboratoire de Didactique André Revuz (LDAR (UMR_4434)) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Université de Lille-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris Cité (UPCité)-CY Cergy Paris Université (CY) | Démarche intégrée pour l'obtention d'aliments de qualité (UMR QualiSud) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | ARVALIS - Institut du Végétal [Boigneville] ; ARVALIS - Institut du végétal [Paris] | Aurea Agroscience
Dataset of chemical and near-infrared spectroscopy measurements of fresh and dried poultry and cattle manure Full text
2021
Gogé, Fabien | Thuriès, Laurent | Fouad, Youssef | Damay, Nathalie | Davrieux, Fabrice | Moussard, Géraud | Leroux, Caroline | Trupin-Maudemain, Séverine | Valé, Matthieu | Morvan, Thierry | Sol Agro et hydrosystème Spatialisation (SAS) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INSTITUT AGRO Agrocampus Ouest ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Université de Montpellier (UM) | Laboratoire de Didactique André Revuz (LDAR (UMR_4434)) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Université de Lille-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris Cité (UPCité)-CY Cergy Paris Université (CY) | Démarche intégrée pour l'obtention d'aliments de qualité (UMR QualiSud) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Institut Agro - Montpellier SupAgro ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | ARVALIS - Institut du Végétal [Boigneville] ; ARVALIS - Institut du végétal [Paris] | Aurea Agroscience
International audience | Combined with multivariate calibration methods, near-infrared (NIR) spectroscopy is a non-destructive, rapid, precise and inexpensive analytical method to predict chemical contents of organic products. Nevertheless, one practical limitation of this approach is that performance of the calibration model may decrease when the data are acquired with different spectrometers. To overcome this limitation, standardization methods exist, such as the piecewise direct standardization (PDS) algorithm.The dataset presented in this article consists of 332 manure samples from poultry and cattle, sampled from farms located in major regions of livestock production in mainland France and Reunion Island. The samples were analysed for seven chemical properties following conventional laboratory methods. NIR spectra were acquired with three spectrometers from fresh homogenized and dried ground samples and then standardized using the PDS algorithm. This important dataset can be used to train and test chemometric models and is of particular interest to NIR spectroscopists and agronomists who assess the agronomic value of animal waste. (C) 2020 The Authors. Published by Elsevier Inc.
Show more [+] Less [-]Dataset of chemical and near-infrared spectroscopy measurements of fresh and dried poultry and cattle manure Full text
2021
Gogé, Fabien | Thuriès, Laurent | Fouad, Youssef | Damay, Nathalie | Davrieux, Fabrice | Moussard, Géraud | Roux, Caroline Le | Trupin-Maudemain, Séverine | Valé, Matthieu | Morvan, Thierry
Combined with multivariate calibration methods, near-infrared (NIR) spectroscopy is a non-destructive, rapid, precise and inexpensive analytical method to predict chemical contents of organic products. Nevertheless, one practical limitation of this approach is that performance of the calibration model may decrease when the data are acquired with different spectrometers. To overcome this limitation, standardization methods exist, such as the piecewise direct standardization (PDS) algorithm.The dataset presented in this article consists of 332 manure samples from poultry and cattle, sampled from farms located in major regions of livestock production in mainland France and Reunion Island. The samples were analysed for seven chemical properties following conventional laboratory methods. NIR spectra were acquired with three spectrometers from fresh homogenized and dried ground samples and then standardized using the PDS algorithm. This important dataset can be used to train and test chemometric models and is of particular interest to NIR spectroscopists and agronomists who assess the agronomic value of animal waste.
Show more [+] Less [-]Dataset of chemical and near-infrared spectroscopy measurements of fresh and dried poultry and cattle manure Full text
2021
Goge, Fabien | Thuriès, Laurent | Fouad, Youssef | Damay, Nathalie | Davrieux, Fabrice | Moussard, Géraud Daniel | Le Roux, Caroline | Trupin-Maudemain, Séverine | Valé, Matthieu | Morvan, Thierry
Combined with multivariate calibration methods, near-infrared (NIR) spectroscopy is a non-destructive, rapid, precise and inexpensive analytical method to predict chemical contents of organic products. Nevertheless, one practical limitation of this approach is that performance of the calibration model may decrease when the data are acquired with different spectrometers. To overcome this limitation, standardization methods exist, such as the piecewise direct standardization (PDS) algorithm. The dataset presented in this article consists of 332 manure samples from poultry and cattle, sampled from farms located in major regions of livestock production in mainland France and Reunion Island. The samples were analysed for seven chemical properties following conventional laboratory methods. NIR spectra were acquired with three spectrometers from fresh homogenized and dried ground samples and then standardized using the PDS algorithm. This important dataset can be used to train and test chemometric models and is of particular interest to NIR spectroscopists and agronomists who assess the agronomic value of animal waste.
Show more [+] Less [-]Physico-chemical dataset from an in situ mesocosm experiment simulating extreme climate events in Lake Geneva (MESOLAC) Full text
2021
Tran-Khac, Viet | Perney, Pascal | Crépin, Laura | Quetin, Philippe | Domaizon, Isabelle | Jacquet, Stéphan | Espinat, Laurent | Gallot, Clémentine | Rasconi, Serena | Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques (CARRTEL) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG) | Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Ile-de-France]) | Université du Littoral Côte d'Opale (ULCO)
Physico-chemical dataset from an in situ mesocosm experiment simulating extreme climate events in Lake Geneva (MESOLAC) Full text
2021
Tran-Khac, Viet | Perney, Pascal | Crépin, Laura | Quetin, Philippe | Domaizon, Isabelle | Jacquet, Stéphan | Espinat, Laurent | Gallot, Clémentine | Rasconi, Serena | Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques (CARRTEL) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG) | Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Ile-de-France]) | Université du Littoral Côte d'Opale (ULCO)
International audience | This dataset complement a previously published dataset [1] and corresponds to the physico-chemical parameters data series produced during the MESOLAC experimental project [2]. The presented dataset is composed of: 1. In situ profiles (0–3m) of temperature, conductivity, pH, dissolved oxygen (concentration and saturation). 2. In situ measurements of light spectral UV/VIS/IR irradiance (300–950 nm wavelength range) taken at 0, 0.25, 0.5, 1, 1.5, 2 and 2.5m. 3. Laboratory chemical analysis of samples collected at 0 and 2 m (conductivity, pH, total alkalinity, NH4, NO2, NO3, total and particulate nitrogen (Ntot, Npart), PO4, total and particulate phosphorus (Ptot, Ppart), total, organic particulate and total particulate carbon (Ctot, Cpart-org, Cpart-tot), Cl, SO4, SiO2. 4. Laboratory analysis of pigments extracted from samples collected at 0 and 2 m (Chla, Chlc, carotenoids, phaeopigments).The experimental design is the same as in Tran-Khac et al [1]. Briefly, it consisted of nine pelagic mesocosms (about 3000 L, 3m depth) deployed in July 2019 in Lake Geneva near the shore of Thonon les Bains (France) aiming to simulate predicted climate scenarios (i.e. extreme events) and assess the response of planktonic communities, ecosystem functioning and resilience.During the experiment, physical parameters were measured twice a week. At the same time, samples were collected at 0 and 2m of depth for subsequent chemical laboratory analyses. These data are presented in the dataset file, ordered by sampling event (numbered from S1 to S8), treatment (Control-C, High-H and Medium-M) and replicates (1 to 3). For each sampling point the measured parameters are listed in columns, missing data and values below the detection limit are marked as NA (not available).This data set aims to contribute to the understanding of the effect of environmental forcing on lake physico-chemical characteristics (such as temperature, oxygen and nutrient concentration) under simulated intense weather events. To a broader extent, the presented data can be used for a wide variety of applications, including monitoring of a large peri-alpine lake functioning under environmental stress and being included in further meta-analysis to generalise the effect of climate change on large lakes. The two complementary dataset differ in the acquired data and methods, temporal and spatial resolution. They complete each other in terms of physico-chemical characterization of the experimental treatments and together can allow comparison of the two different monitoring strategies (continuous vs punctual) during in situ experimental manipulations.
Show more [+] Less [-]Physico-chemical dataset from an in situ mesocosm experiment simulating extreme climate events in Lake Geneva (MESOLAC) Full text
2021
Trà̂n, Khá̆c Việt | Perney, Pascal | Crépin, Laura | Quetin, Philippe | Domaizon, Isabelle | Jacquet, Stephan | Espinat, Laurent | Gallot, Clémentine | Rasconi, Serena
This dataset complement a previously published dataset [1] and corresponds to the physico-chemical parameters data series produced during the MESOLAC experimental project [2]. The presented dataset is composed of: 1. In situ profiles (0–3m) of temperature, conductivity, pH, dissolved oxygen (concentration and saturation). 2. In situ measurements of light spectral UV/VIS/IR irradiance (300–950 nm wavelength range) taken at 0, 0.25, 0.5, 1, 1.5, 2 and 2.5m. 3. Laboratory chemical analysis of samples collected at 0 and 2 m (conductivity, pH, total alkalinity, NH₄, NO₂, NO₃, total and particulate nitrogen (Ntot, Npart), PO₄, total and particulate phosphorus (Ptot, Ppart), total, organic particulate and total particulate carbon (Ctot, Cpart-org, Cpart-tot), Cl, SO₄, SiO₂. 4. Laboratory analysis of pigments extracted from samples collected at 0 and 2 m (Chla, Chlc, carotenoids, phaeopigments).The experimental design is the same as in Tran-Khac et al [1]. Briefly, it consisted of nine pelagic mesocosms (about 3000 L, 3m depth) deployed in July 2019 in Lake Geneva near the shore of Thonon les Bains (France) aiming to simulate predicted climate scenarios (i.e. extreme events) and assess the response of planktonic communities, ecosystem functioning and resilience.During the experiment, physical parameters were measured twice a week. At the same time, samples were collected at 0 and 2m of depth for subsequent chemical laboratory analyses. These data are presented in the dataset file, ordered by sampling event (numbered from S1 to S8), treatment (Control-C, High-H and Medium-M) and replicates (1 to 3). For each sampling point the measured parameters are listed in columns, missing data and values below the detection limit are marked as NA (not available).This data set aims to contribute to the understanding of the effect of environmental forcing on lake physico-chemical characteristics (such as temperature, oxygen and nutrient concentration) under simulated intense weather events. To a broader extent, the presented data can be used for a wide variety of applications, including monitoring of a large peri-alpine lake functioning under environmental stress and being included in further meta-analysis to generalise the effect of climate change on large lakes. The two complementary dataset differ in the acquired data and methods, temporal and spatial resolution. They complete each other in terms of physico-chemical characterization of the experimental treatments and together can allow comparison of the two different monitoring strategies (continuous vs punctual) during in situ experimental manipulations.
Show more [+] Less [-]A spatiotemporal dataset for integrated assessment and modelling of crop-livestock integration with the MAELIA simulation platform Full text
2021
Catarino, Rui | Therond, Olivier | Berthomier, Jérémy | Bockstaller, Christian | Curran, Michael | Miara, Maurice | Mérot, Emmanuel | Messéan, Antoine | Misslin, Renaud | Vanhove, Paul | van Stappen, Florence | Stilmant, Didier | Villerd, Jean | Angevin, Frédérique | Laboratoire Agronomie et Environnement - Antenne Colmar (LAE-Colmar) ; Laboratoire Agronomie et Environnement (LAE) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Chambre Régionale d'Agriculture des Pays de la Loire | Research Institute of Organic Agriculture - Forschungsinstitut für biologischen Landbau (FiBL) | Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire Agronomie et Environnement (LAE) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Centre wallon de Recherches Agronomiques [Belgique] = Walloon Agricultural Research Centre [Belgium] (CRA-W) | European Project: 727482,DiverIMPACTS
A spatiotemporal dataset for integrated assessment and modelling of crop-livestock integration with the MAELIA simulation platform Full text
2021
Catarino, Rui | Therond, Olivier | Berthomier, Jérémy | Bockstaller, Christian | Curran, Michael | Miara, Maurice | Mérot, Emmanuel | Messéan, Antoine | Misslin, Renaud | Vanhove, Paul | van Stappen, Florence | Stilmant, Didier | Villerd, Jean | Angevin, Frédérique | Laboratoire Agronomie et Environnement - Antenne Colmar (LAE-Colmar) ; Laboratoire Agronomie et Environnement (LAE) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Chambre Régionale d'Agriculture des Pays de la Loire | Research Institute of Organic Agriculture - Forschungsinstitut für biologischen Landbau (FiBL) | Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire Agronomie et Environnement (LAE) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Centre wallon de Recherches Agronomiques [Belgique] = Walloon Agricultural Research Centre [Belgium] (CRA-W) | European Project: 727482,DiverIMPACTS
International audience | The general purpose of the primary and secondary data available in this article is to support an integrated assessment of scenarios of crop-livestock integration at the territorial level i.e. of exchanges between arable and livestock farms. The data is a result of a research collaboration between the scientist from INRAE, agricultural advisers from Chamber of Agriculture of Pays de la Loire (CRAPL) and a collective of five arable and two livestock farmers located in the district of Pays de Pouzauges (Vendée department, western France). All participants formed part of the DiverIMPACTS project (https://www.diverimpacts.net/) that aims to achieve the full potential of diversification of cropping systems for improved productivity, delivery of ecosystem services and resource-efficient and sustainable value chains in Europe.
Show more [+] Less [-]A spatiotemporal dataset for integrated assessment and modelling of crop-livestock integration with the MAELIA simulation platform Full text
2021
Catarino, Rui | Therond, Olivier | Berthomier, Jérémy | Bockstaller, Christian | Curran, Michael | Miara, Maurice | Mérot, Emmanuel | Messean, Antoine | Misslin, Renaud | Vanhove, Paul | Van Stappen, Florence | Stilmant, Didier | Villerd, Jean | Angevin, Frederique
The general purpose of the primary and secondary data available in this article is to support an integrated assessment of scenarios of crop-livestock integration at the territorial level i.e. of exchanges between arable and livestock farms. The data is a result of a research collaboration between the scientist from INRAE, agricultural advisers from Chamber of Agriculture of Pays de la Loire (CRAPL) and a collective of five arable and two livestock farmers located in the district of Pays de Pouzauges (Vendée department, western France). All participants formed part of the DiverIMPACTS project (https://www.diverimpacts.net/) that aims to achieve the full potential of diversification of cropping systems for improved productivity, delivery of ecosystem services and resource-efficient and sustainable value chains in Europe. The first dataset corresponds to the inputs of MAELIA (http://maelia-platform.inra.fr/), a spatial agent-based simulation platform that was used to support an iterative design and assessment of scenarios to redesign cropping systems. The second dataset corresponds to the outputs of MAELIA simulations and the associated indicators at the farm, group and territory level. The data comprise multiple shape and csv files characterizing the edaphic-climatic heterogeneity of the territory and cropping systems, farmers’ crop management rules (IF-THEN rules) and general information about the farms (e.g. crops, agricultural equipment, average crop yields). Data is reported for the baseline situation and three exchange scenarios containing different innovative cropping systems co-designed by scientists, agricultural advisers and the farmers. The data presented here can be found in the Portail Data INRA repository (https://doi.org/10.15454/3ZTCF5) and were used in the research article “Fostering local crop-livestock integration via legume exchanges using an innovative integrated assessment and modelling approach: MAELIA” [1].
Show more [+] Less [-]Data on agronomic traits, biochemical composition of lipids, proteins and polysaccharides and rheological measurement in a brown mustard seed collection Full text
2021
Gall, Sophie Le | Solé-Jamault, Véronique | Nars-Chasseray, Marine | Le Goff, Aude | Le Bot, Lucie | Guinet, Thierry | Renaud, Christelle | Bansard, Stéphane | Ohleyer, Laure | Jeandroz, Sylvain | Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | BIBS - Plateforme Bioressources : Imagerie, Biochimie & Structure ; Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INRAE, PROBE Research Infrastructure | AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Unilever ; Unilever | Chambre d'Agriculture de la Côte d'Or (CA 21) | Agroécologie [Dijon] ; Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | project FEADER : OSIRIS RBO160118CR0260008.
Data on agronomic traits, biochemical composition of lipids, proteins and polysaccharides and rheological measurement in a brown mustard seed collection Full text
2021
Gall, Sophie Le | Solé-Jamault, Véronique | Nars-Chasseray, Marine | Le Goff, Aude | Le Bot, Lucie | Guinet, Thierry | Renaud, Christelle | Bansard, Stéphane | Ohleyer, Laure | Jeandroz, Sylvain | Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | BIBS - Plateforme Bioressources : Imagerie, Biochimie & Structure ; Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-INRAE, PROBE Research Infrastructure | AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Unilever ; Unilever | Chambre d'Agriculture de la Côte d'Or (CA 21) | Agroécologie [Dijon] ; Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | project FEADER : OSIRIS RBO160118CR0260008.
International audience | The data were collected from a brown mustard seeds collection of 18 accessions during two years and in three distinct sites of production in France. The 18 accessions of mustard seeds were selected to be representative of genetic, agronomical and technological variabilities. All accessions were produced in the "Bourgogne " area. This article describes agronomical data (PMG, yield), genotyping data, global composition of mustard seeds (lipids, proteins and polysaccharides) and fine composition of the previous macronutrients potentially involved in the technological properties (fatty acids, storage proteins and osidic composition of polysaccharides). Additional data regarding the potential rheological property of each accessions were also reported. These data can be reused by food industries, breeders and geneticists in order to understand pedoclimatic effects (year and location) and the relation between mustard seed composition and the end uses properties (paste mustard quality).
Show more [+] Less [-]Data on agronomic traits, biochemical composition of lipids, proteins and polysaccharides and rheological measurement in a brown mustard seed collection Full text
2021
Le Gall, Sophie | Sole-Jamault, Véronique | Nars-Chasseray, Marine | Le Goff, Aude | Le Bot, Lucie | Guinet, Thierry | Renaud, Christelle | Gervais, Jérôme | Bansard, Stéphane | Ohleyer, Laure | Jeandroz, Sylvain
The data were collected from a brown mustard seeds collection of 18 accessions during two years and in three distinct sites of production in France. The 18 accessions of mustard seeds were selected to be representative of genetic, agronomical and technological variabilities. All accessions were produced in the “Bourgogne” area. This article describes agronomical data (PMG, yield), genotyping data, global composition of mustard seeds (lipids, proteins and polysaccharides) and fine composition of the previous macronutrients potentially involved in the technological properties (fatty acids, storage proteins and osidic composition of polysaccharides). Additional data regarding the potential rheological property of each accessions were also reported. These data can be reused by food industries, breeders and geneticists in order to understand pedoclimatic effects (year and location) and the relation between mustard seed composition and the end-uses properties (paste mustard quality).
Show more [+] Less [-]Nitrous oxide fluxes and soil nitrogen contents over eight years in four cropping systems designed to meet both environmental and production goals: A French field nitrogen data set Full text
2021
Colnenne-David, Caroline | Grandeau, Gilles | Jeuffroy, Marie-Hélène | Doré, Thierry | Agronomie ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Nitrous oxide fluxes and soil nitrogen contents over eight years in four cropping systems designed to meet both environmental and production goals: A French field nitrogen data set Full text
2021
Colnenne-David, Caroline | Grandeau, Gilles | Jeuffroy, Marie-Hélène | Doré, Thierry | Agronomie ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | With the development of agroecosystem approaches, new cropping systems have to be designed to deliver multiple ecosystem services. In this context, we assessed four innovative cropping systems, designed to reach multiple environmental and production goals, in a long-term field experiment (2009-2020) at Grignon (France, N 48.84°, E 1.95°). A wide range of measurements were made, for nutrient cycles and organic matter in particular, for an analysis of interactions occurring during the emissions of greenhouse gases. We focus here on nitrogen (N) data collected over eight years (2009-2016). The data include: nitrous oxide fluxes (N2O), soil N contents (NO3- and NH4+), aboveground plant N content and biomass at maturity, yield, agricultural practices including N spreading, and climate. The four systems differ in terms of tillage practices, N inputs, and species, which is likely to affect soil N. Field data were collected and N2O fluxes were calculated. These original new cropping systems are innovating, resulting in new combinations of agricultural practices. The data obtained could be used to improve models for parameterization and validation, and to increase the predictive accuracy of models of N losses in original conditions.
Show more [+] Less [-]Nitrous oxide fluxes and soil nitrogen contents over eight years in four cropping systems designed to meet both environmental and production goals: A French field nitrogen data set Full text
2021
Colnenne-David, Caroline | Grandeau, Gilles | Jeuffroy, Marie-Hélène | Doré, Thierry
With the development of agroecosystem approaches, new cropping systems have to be designed to deliver multiple ecosystem services. In this context, we assessed four innovative cropping systems, designed to reach multiple environmental and production goals, in a long-term field experiment (2009–2020) at Grignon (France, N 48.84°, E 1.95°). A wide range of measurements were made, for nutrient cycles and organic matter in particular, for an analysis of interactions occurring during the emissions of greenhouse gases. We focus here on nitrogen (N) data collected over eight years (2009–2016). The data include: nitrous oxide fluxes (N₂O), soil N contents (NO₃⁻ and NH₄⁺), aboveground plant N content and biomass at maturity, yield, agricultural practices including N spreading, and climate. The four systems differ in terms of tillage practices, N inputs, and species, which is likely to affect soil N. Field data were collected and N₂O fluxes were calculated. These original new cropping systems are innovating, resulting in new combinations of agricultural practices. The data obtained could be used to improve models for parameterization and validation, and to increase the predictive accuracy of models of N losses in original conditions.
Show more [+] Less [-]