Refine search
Results 101-110 of 666
Electroretinogram analysis of the visual response in zebrafish larvae Full text
2015
Chrispell, Jared D. | Rebrik, Tatiana I. | Weiss, Ellen R.
The electroretinogram (ERG) is a noninvasive electrophysiological method for determining retinal function. Through the placement of an electrode on the surface of the cornea, electrical activity generated in response to light can be measured and used to assess the activity of retinal cells in vivo. This manuscript describes the use of the ERG to measure visual function in zebrafish. Zebrafish have long been utilized as a model for vertebrate development due to the ease of gene suppression by morpholino oligonucleotides and pharmacological manipulation. At 5-10 dpf, only cones are functional in the larval retina. Therefore, the zebrafish, unlike other animals, is a powerful model system for the study of cone visual function in vivo. This protocol uses standard anesthesia, micromanipulation and stereomicroscopy protocols that are common in laboratories that perform zebrafish research. The outlined methods make use of standard electrophysiology equipment and a low light camera to guide the placement of the recording microelectrode onto the larval cornea. Finally, we demonstrate how a commercially available ERG stimulator/recorder originally designed for use with mice can easily be adapted for use with zebrafish. ERG of larval zebrafish provides an excellent method of assaying cone visual function in animals that have been modified by morpholino oligonucleotide injection as well as newer genome engineering techniques such as Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9, all of which have greatly increased the efficiency and efficacy of gene targeting in zebrafish. In addition, we take advantage of the ability of pharmacological agents to penetrate zebrafish larvae to evaluate the molecular components that contribute to the photoresponse. This protocol outlines a setup that can be modified and used by researchers with various experimental goals.
Show more [+] Less [-]A technical perspective in modern tree-ring research - how to overcome dendroecological and wood anatomical challenges Full text
2015
Gärtner, Holger | Cherubini, Paolo | Fonti, Patrick | von Arx, Georg | Schneider, Loïc | Nievergelt, Daniel | Verstege, Anne | Bast, Alexander | Schweingruber, Fritz H. | Büntgen, Ulf
Dendroecological research uses information stored in tree rings to understand how single trees and even entire forest ecosystems responded to environmental changes and to finally reconstruct such changes. This is done by analyzing growth variations back in time and correlating various plant-specific parameters to (for example) temperature records. Integrating wood anatomical parameters in these analyses would strengthen reconstructions, even down to intra-annual resolution. We therefore present a protocol on how to sample, prepare, and analyze wooden specimen for common macroscopic analyses, but also for subsequent microscopic analyses. Furthermore we introduce a potential solution for analyzing digital images generated from common small and large specimens to support time-series analyses. The protocol presents the basic steps as they currently can be used. Beyond this, there is an ongoing need for the improvement of existing techniques, and development of new techniques, to record and quantify past and ongoing environmental processes. Traditional wood anatomical research needs to be expanded to include ecological information to this field of research. This would support dendro-scientists who intend to analyze new parameters and develop new methodologies to understand the short and long term effects of specific environmental factors on the anatomy of woody plants.
Show more [+] Less [-]Minimally invasive thumb-sized pterional craniotomy for surgical clip ligation of unruptured anterior circulation aneurysms Full text
2015
Deshaies, Eric M. | Villwock, Mark R | Singla, Amit | Toshkezi, Gentian | Padalino, David J
Less invasive surgical approaches for intracranial aneurysm clipping may reduce length of hospital stay, surgical morbidity, treatment cost, and improve patient outcomes. We present our experience with a minimally invasive pterional approach for anterior circulation aneurysms performed in a major tertiary cerebrovascular center and compare the results with an aged matched dataset from the Nationwide Inpatient Sample (NIS). From August 2008 to December 2012, 22 elective aneurysm clippings on patients ≤55 years of age were performed by the same dual fellowship-trained cerebrovascular/endovascular neurosurgeon. One patient (4.5%) experienced transient post-operative complications. 18 of 22 patients returned for follow-up imaging and there were no recurrences through an average duration of 22 months. A search in the NIS database from 2008 to 2010, also for patients aged ≤55 years of age, yielded 1,341 hospitalizations for surgical clip ligation of unruptured cerebral aneurysms. Inpatient length of stay and hospital charges at our institution using the minimally invasive thumb-sized pterional technique were nearly half that of NIS (length of stay: 3.2 vs 5.7 days; hospital charges: $52,779 vs. $101,882). The minimally invasive thumb-sized pterional craniotomy allows good exposure of unruptured small and medium-sized supraclinoid anterior circulation aneurysms. Cerebrospinal fluid drainage from key subarachnoid cisterns and constant bimanual microsurgical techniques avoid the need for retractors which can cause contusions, localized venous infarctions, and post-operative cerebral edema at the retractor sites. Utilizing this set of techniques has afforded our patients with a shorter hospital stay at a lower cost compared to the national average.
Show more [+] Less [-]Green fluorescent protein-based expression screening of membrane proteins in Escherichia coli Full text
2015
Bird, Louise E. | Rada, Heather | Varmā, Anila | Gasper, Raphael | Birch, James | Jennions, Matthew | Lӧwe, Jan | Moraes, Isabel | Owens, Raymond J.
The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.
Show more [+] Less [-]Genome-wide protein-protein interaction screening by protein-fragment complementation assay (pca) in living cells Full text
2015
Rochette, Samuel | Diss, Guillaume | Filteau, Marie | Leducq, Jean-Baptiste | Dubé, Alexandre K. | Landry, Christian R.
Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein’s function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs.
Show more [+] Less [-]Ex Vivo culture of chick cerebellar slices and spatially targeted electroporation of granule cell precursors Full text
2015
Hanzel, Michalina | Wingate, Richard J.T. | Butts, Thomas
The cerebellar external granule layer (EGL) is the site of the largest transit amplification in the developing brain, and an excellent model for studying neuronal proliferation and differentiation. In addition, evolutionary modifications of its proliferative capability have been responsible for the dramatic expansion of cerebellar size in the amniotes, making the cerebellum an excellent model for evo-devo studies of the vertebrate brain. The constituent cells of the EGL, cerebellar granule progenitors, also represent a significant cell of origin for medulloblastoma, the most prevalent paediatric neuronal tumour. Following transit amplification, granule precursors migrate radially into the internal granular layer of the cerebellum where they represent the largest neuronal population in the mature mammalian brain. In chick, the peak of EGL proliferation occurs towards the end of the second week of gestation. In order to target genetic modification to this layer at the peak of proliferation, we have developed a method for genetic manipulation through ex vivo electroporation of cerebellum slices from embryonic Day 14 chick embryos. This method recapitulates several important aspects of in vivo granule neuron development and will be useful in generating a thorough understanding of cerebellar granule cell proliferation and differentiation, and thus of cerebellum development, evolution and disease.
Show more [+] Less [-]Porphyromonas gingivalis as a model organism for assessing interaction of anaerobic bacteria with host cells Full text
2015
Wunsch, Christopher M. | Lewis, Janina P.
Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal-spatial visualization of bacteria. Methods used in this study can be applied to any cultivable anaerobe and any eukaryotic cell type.
Show more [+] Less [-]Engineering 3d cellularized collagen gels for vascular tissue regeneration Full text
2015
Meghezi, Sébastien | Seifu, Dawit G. | Bono, Nina | Unsworth, Larry | Mequanint, Kibret | Mantovani, D. (Diego)
Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled. The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The “static bioreactor” provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues.
Show more [+] Less [-]Rnai-mediated control of aflatoxins in peanut: method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem Full text
2015
Arias, Renée S. | Dang, Phat M. | Sobolev, Victor S.
The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accumulated by the fungi Aspergillus flavus and A. parasiticus in cereals, nuts, root crops and other agricultural products. Silencing of five aflatoxin-synthesis genes by RNA interference (RNAi) in peanut plants was used to control aflatoxin accumulation following inoculation with A. flavus. Previously, no method existed to analyze the effectiveness of RNAi in individual peanut transgenic events, as these usually produce few seeds, and traditional methods of large field experiments under aflatoxin-conducive conditions were not an option. In the field, the probability of finding naturally contaminated seeds is often 1/100 to 1/1,000. In addition, aflatoxin contamination is not uniformly distributed. Our method uses few seeds per transgenic event, with small pieces processed for real-time PCR (RT-PCR) or small RNA sequencing, and for analysis of aflatoxin accumulation by ultra-performance liquid chromatography (UPLC). RNAi-expressing peanut lines 288-72 and 288-74, showed up to 100% reduction (p≤0.01) in aflatoxin B1 and B2 compared to the control that accumulated up to 14,000 ng.g-1 of aflatoxin B1 when inoculated with aflatoxigenic A. flavus. As reference, the maximum total of aflatoxins allowable for human consumption in the United States is 20 ng.g-1. This protocol describes the application of RNAi-mediated control of aflatoxins in transgenic peanut seeds and methods for its evaluation. We believe that its application in breeding of peanut and other crops will bring rapid advancement in this important area of science, medicine and human nutrition, and will significantly contribute to the international effort to control aflatoxins, and potentially other mycotoxins in major food crops.
Show more [+] Less [-]Measuring phagosome ph by ratiometric fluorescence microscopy Full text
2015
Nunes, Paula | Guido, Daniele | Demaurex, Nicolas
Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H+ is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized protocol for the functional imaging of phagosomes.
Show more [+] Less [-]