Refine search
Results 21-30 of 9,675
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in <em>E. coli</em> Full text
2014
Saez, Natalie | Nozach, Hervé | Blemont, Marilyne | Vincentelli, Renaud | Architecture et fonction des macromolécules biologiques (AFMB) ; Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in <em>E. coli</em> Full text
2014
Saez, Natalie | Nozach, Hervé | Blemont, Marilyne | Vincentelli, Renaud | Architecture et fonction des macromolécules biologiques (AFMB) ; Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience
Show more [+] Less [-]High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli Full text
2014
Saez, Natalie J. | Nozach, Hervé | Blemont, Marilyne | Vincentelli, Renaud
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Show more [+] Less [-]Imaging InIC Secretion to Investigate Cellular Infection by the Bacterial Pathogen Listeria monocytogenes Full text
2013
Kuehbacher, Andreas | Gouin, Edith | Cossart, Pascale | Pizarro-Cerdá, Javier | Interactions Bactéries-Cellules (UIBC) ; Institut National de la Recherche Agronomique (INRA)-Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM) | USC2020 ; Inst Natl Rech Agron | Pasteur Institute ; Institut National de la Sante et de la Recherche Medicale ; Institut National de la Recherche Agronomique ; ERC 233348 ; Agence Nationale de la Recherche ; Louis-Jeantet Foundation ; Fondation Le Roch Les Mousquetaires ;Pasteur-Paris University International Doctoral Program/Institut Carnot Maladies Infectieuses
Imaging InIC Secretion to Investigate Cellular Infection by the Bacterial Pathogen Listeria monocytogenes Full text
2013
Kuehbacher, Andreas | Gouin, Edith | Cossart, Pascale | Pizarro-Cerdá, Javier | Interactions Bactéries-Cellules (UIBC) ; Institut National de la Recherche Agronomique (INRA)-Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM) | USC2020 ; Inst Natl Rech Agron | Pasteur Institute ; Institut National de la Sante et de la Recherche Medicale ; Institut National de la Recherche Agronomique ; ERC 233348 ; Agence Nationale de la Recherche ; Louis-Jeantet Foundation ; Fondation Le Roch Les Mousquetaires ;Pasteur-Paris University International Doctoral Program/Institut Carnot Maladies Infectieuses
International audience | Bacterial intracellular pathogens can be conceived as molecular tools to dissect cellular signaling cascades due to their capacity to exquisitely manipulate and subvert cell functions which are required for the infection of host target tissues. Among these bacterial pathogens, Listeria monocytogenes is a Gram positive microorganism that has been used as a paradigm for intracellular parasitism in the characterization of cellular immune responses, and which has played instrumental roles in the discovery of molecular pathways controlling cytoskeletal and membrane trafficking dynamics. In this article, we describe a robust microscopical assay for the detection of late cellular infection stages of L. monocytogenes based on the fluorescent labeling of InIC, a secreted bacterial protein which accumulates in the cytoplasm of infected cells; this assay can be coupled to automated high-throughput small interfering RNA screens in order to characterize cellular signaling pathways involved in the up-or down-regulation of infection.
Show more [+] Less [-]Imaging inlc secretion to investigate cellular infection by the bacterial pathogen Listeria monocytogenes Full text
2013
Kühbacher, Andreas | Gouin, Edith | Mercer, Jason | Emmenlauer, Mario | Dehio, Christoph | Cossart, Pascale | Pizarro-Cerdá, Javier
Bacterial intracellular pathogens can be conceived as molecular tools to dissect cellular signaling cascades due to their capacity to exquisitely manipulate and subvert cell functions which are required for the infection of host target tissues. Among these bacterial pathogens, Listeria monocytogenes is a Gram positive microorganism that has been used as a paradigm for intracellular parasitism in the characterization of cellular immune responses, and which has played instrumental roles in the discovery of molecular pathways controlling cytoskeletal and membrane trafficking dynamics. In this article, we describe a robust microscopical assay for the detection of late cellular infection stages of L. monocytogenes based on the fluorescent labeling of InlC, a secreted bacterial protein which accumulates in the cytoplasm of infected cells; this assay can be coupled to automated high-throughput small interfering RNA screens in order to characterize cellular signaling pathways involved in the up- or down-regulation of infection.
Show more [+] Less [-]Isolating nasal olfactory stem cells from rodents or humans Full text
2011
Girard, Stéphane D. | Devéze, Arnaud | Nivet, Emmanuel | Gepner, Bruno | Roman, Francois S. | Féron, François | Neurobiologie des interactions cellulaires et neurophysiopathologie - NICN (NICN) ; Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) | Vect-Horus | Service ENT ; Assistance Publique - Hôpitaux de Marseille (APHM) | Laboratoire Parole et Langage (LPL) ; Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Neurosciences intégratives et adaptatives (LNIA) ; Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) | Neurobiologie des interactions cellulaires et neurophysiopathologie - NICN (NICN) ; Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS)
Isolating nasal olfactory stem cells from rodents or humans Full text
2011
Girard, Stéphane D. | Devéze, Arnaud | Nivet, Emmanuel | Gepner, Bruno | Roman, Francois S. | Féron, François | Neurobiologie des interactions cellulaires et neurophysiopathologie - NICN (NICN) ; Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) | Vect-Horus | Service ENT ; Assistance Publique - Hôpitaux de Marseille (APHM) | Laboratoire Parole et Langage (LPL) ; Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Neurosciences intégratives et adaptatives (LNIA) ; Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) | Neurobiologie des interactions cellulaires et neurophysiopathologie - NICN (NICN) ; Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS)
International audience | The olfactory mucosa, located in the nasal cavity, is in charge of detecting odours. It is also the only nervous tissue that is exposed to the external environment and easily accessible in every living individual. As a result, this tissue is unique for anyone aiming to identify molecular anomalies in the pathological brain or isolate adult stem cells for cell therapy. Molecular abnormalities in brain diseases are often studied using nervous tissue samples collected post-mortem. However, this material has numerous limitations. In contrast, the olfactory mucosa is readily accessible and can be biopsied safely without any loss of sense of smell(1). Accordingly, the olfactory mucosa provides an "open window" in the adult human through which one can study developmental (e.g. autism, schizophrenia)(2-4) or neurodegenerative (e.g. Parkinson, Alzheimer) diseases(4,5). Olfactory mucosa can be used for either comparative molecular studies(4,6) or in vitro experiments on neurogenesis(3,7). The olfactory epithelium is also a nervous tissue that produces new neurons every day to replace those that are damaged by pollution, bacterial of viral infections. This permanent neurogenesis is sustained by progenitors but also stem cells residing within both compartments of the mucosa, namely the neuroepithelium and the underlying lamina propria(8-10). We recently developed a method to purify the adult stem cells located in the lamina propria and, after having demonstrated that they are closely related to bone marrow mesenchymal stem cells (BM-MSC), we named them olfactory ecto-mesenchymal stem cells (OE-MSC)(11). Interestingly, when compared to BM-MSCs, OE-MSCs display a high proliferation rate, an elevated clonogenicity and an inclination to differentiate into neural cells. We took advantage of these characteristics to perform studies dedicated to unveil new candidate genes in schizophrenia and Parkinson's disease(4). We and others have also shown that OE-MSCs are promising candidates for cell therapy, after a spinal cord trauma(12,13), a cochlear damage(14) or in an animal models of Parkinson's disease(15) or amnesia(16). In this study, we present methods to biopsy olfactory mucosa in rats and humans. After collection, the lamina propria is enzymatically separated from the epithelium and stem cells are purified using an enzymatic or a non-enzymatic method. Purified olfactory stem cells can then be either grown in large numbers and banked in liquid nitrogen or induced to form spheres or differentiated into neural cells. These stem cells can also be used for comparative omics (genomic, transcriptomic, epigenomic, proteomic) studies.
Show more [+] Less [-]Isolating nasal olfactory stem cells from rodents or humans Full text
2011
Girard, Stéphane D. | Devéze, Arnaud | Nivet, Emmanuel | Gepner, Bruno | Roman, François S. | Féron, François
The olfactory mucosa, located in the nasal cavity, is in charge of detecting odours. It is also the only nervous tissue that is exposed to the external environment and easily accessible in every living individual. As a result, this tissue is unique for anyone aiming to identify molecular anomalies in the pathological brain or isolate adult stem cells for cell therapy. Molecular abnormalities in brain diseases are often studied using nervous tissue samples collected post-mortem. However, this material has numerous limitations. In contrast, the olfactory mucosa is readily accessible and can be biopsied safely without any loss of sense of smell1. Accordingly, the olfactory mucosa provides an "open window" in the adult human through which one can study developmental (e.g. autism, schizophrenia)2-4 or neurodegenerative (e.g. Parkinson, Alzheimer) diseases4,5. Olfactory mucosa can be used for either comparative molecular studies4,6 or in vitro experiments on neurogenesis3,7. The olfactory epithelium is also a nervous tissue that produces new neurons every day to replace those that are damaged by pollution, bacterial of viral infections. This permanent neurogenesis is sustained by progenitors but also stem cells residing within both compartments of the mucosa, namely the neuroepithelium and the underlying lamina propria8-10. We recently developed a method to purify the adult stem cells located in the lamina propria and, after having demonstrated that they are closely related to bone marrow mesenchymal stem cells (BM-MSC), we named them olfactory ecto-mesenchymal stem cells (OE-MSC)11. Interestingly, when compared to BM-MSCs, OE-MSCs display a high proliferation rate, an elevated clonogenicity and an inclination to differentiate into neural cells. We took advantage of these characteristics to perform studies dedicated to unveil new candidate genes in schizophrenia and Parkinson's disease4. We and others have also shown that OE-MSCs are promising candidates for cell therapy, after a spinal cord trauma12,13, a cochlear damage14 or in an animal models of Parkinson's disease15 or amnesia16. In this study, we present methods to biopsy olfactory mucosa in rats and humans. After collection, the lamina propria is enzymatically separated from the epithelium and stem cells are purified using an enzymatic or a non-enzymatic method. Purified olfactory stem cells can then be either grown in large numbers and banked in liquid nitrogen or induced to form spheres or differentiated into neural cells. These stem cells can also be used for comparative omics (genomic, transcriptomic, epigenomic, proteomic) studies.
Show more [+] Less [-]Assessing mineral availability in fish feeds using complementary methods demonstrated with the example of zinc in atlantic salmon Full text
2021
Silva, Marta Sofia | Stewart, Thea | Amlund, Heidi | Sloth, Jens Jørgen | Araujo, Pedro | Lock, Erik Jan Robert | Hogstrand, Christer | Ørnsrud, Robin | Waagbø, Rune | Prabhu, P. Antony Jesu
Assessing mineral availability in fish feeds using complementary methods demonstrated with the example of zinc in atlantic salmon Full text
2021
Silva, Marta Sofia | Stewart, Thea | Amlund, Heidi | Sloth, Jens Jørgen | Araujo, Pedro | Lock, Erik Jan Robert | Hogstrand, Christer | Ørnsrud, Robin | Waagbø, Rune | Prabhu, P. Antony Jesu
Assessing the availability of dietary micro-minerals is a major challenge in mineral nutrition of fish species. The present article aims to describe a systematic approach combining different methodologies to assess the availability of zinc (Zn) in Atlantic salmon (Salmo salar). Considering that several Zn chemical species can be present in an Atlantic salmon feed, it was hypothesised that Zn availability is influenced by the Zn chemical species present in the feed. Thus, in this study, the first protocol is about how to extract the different Zn chemical species from the feed and to analyze them by a size exclusion chromatography-inductively coupled plasma mass spectroscopy (SEC-ICP-MS) method. Subsequently, an in vitro method was developed to evaluate the solubility of dietary Zn in Atlantic salmon feeds. The third protocol describes the method to study the impact of changing Zn chemical species composition on the uptake of Zn in a fish intestinal epithelial model using a rainbow trout gut cell line (RTgutGC). Together, the findings from the in vitro methods were compared with an in vivo study examining the apparent availability of inorganic and organic sources of Zn supplemented to Atlantic salmon feeds. The results showed that several Zn chemical species can be found in feeds and the efficiency of an organic Zn source depends very much on the amino acid ligand used to chelate Zn. The findings of the in vitro methods had less correlation with that outcome of the in vivo study. Nevertheless, in vitro protocols described in this article provided crucial information regarding Zn availability and its assessment in fish feeds. | publishedVersion
Show more [+] Less [-]Assessing mineral availability in fish feeds using complementary methods demonstrated with the example of zinc in atlantic salmon Full text
2021
Silva, Marta Sofia | Stewart, Thea | Amlund, Heidi | Sloth, Jens Jørgen | Araujo, Pedro | Lock, Erik Jan Robert | Hogstrand, Christer | Ørnsrud, Robin | Waagbø, Rune | Prabhu, P. Antony Jesu
Assessing the availability of dietary micro-minerals is a major challenge in mineral nutrition of fish species. The present article aims to describe a systematic approach combining different methodologies to assess the availability of zinc (Zn) in Atlantic salmon (Salmo salar). Considering that several Zn chemical species can be present in an Atlantic salmon feed, it was hypothesised that Zn availability is influenced by the Zn chemical species present in the feed. Thus, in this study, the first protocol is about how to extract the different Zn chemical species from the feed and to analyze them by a size exclusion chromatography-inductively coupled plasma mass spectroscopy (SEC-ICP-MS) method. Subsequently, an in vitro method was developed to evaluate the solubility of dietary Zn in Atlantic salmon feeds. The third protocol describes the method to study the impact of changing Zn chemical species composition on the uptake of Zn in a fish intestinal epithelial model using a rainbow trout gut cell line (RTgutGC). Together, the findings from the in vitro methods were compared with an in vivo study examining the apparent availability of inorganic and organic sources of Zn supplemented to Atlantic salmon feeds. The results showed that several Zn chemical species can be found in feeds and the efficiency of an organic Zn source depends very much on the amino acid ligand used to chelate Zn. The findings of the in vitro methods had less correlation with that outcome of the in vivo study. Nevertheless, in vitro protocols described in this article provided crucial information regarding Zn availability and its assessment in fish feeds. | publishedVersion
Show more [+] Less [-]Following the Dynamics of Structural Variants in Experimentally Evolved Populations Full text
2023
Finnegan, Michael | Hamet, Jeanne | Desmarais, Erick | Bedhomme, Stéphanie | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | Institut des Sciences de l'Evolution de Montpellier (UMR ISEM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | ANR-10-LABX-0004,CeMEB,Mediterranean Center for Environment and Biodiversity(2010) | European Project: 682819,H2020,ERC-2015-CoG,HGTCODONUSE(2016)
International audience
Show more [+] Less [-]Cell-Free protein synthesis from exonuclease-deficient cellular extracts utilizing linear DNA templates Full text
2022
Sabeti Azad, Mahnaz | Cardoso Batista, Angelo | Faulon, Jean-Loup | Beisel, Chase, L | Bonnet, Jérôme | Kushwaha, Manish | MICrobiologie de l'ALImentation au Service de la Santé (MICALIS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Helmholtz Centre for Infection Research (HZI) | University Hospital of Würzburg | Centre de Biologie Structurale [Montpellier] (CBS) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | ANR-17-CE07-0046,SINAPUV,(Bio)synthèse et étude des propriétés physico-chimiques et biologiques d'analogues du malate de sinapoyl: de nouvelles molécules anti-UV non-toxiques et biosourcées pour l'industrie cosmétique(2017) | ANR-18-CE33-0015,VR-MARS,Réalité Virtuelle, Assistance et Secours Médical pour Spationautes(2018) | ANR-21-CE48-0003,DREAMY,Algorithmes distribués pour les systèmes microbiologiques(2021)
International audience | Cell-free protein synthesis (CFPS) has recently become very popular in the field of synthetic biology due to its numerous advantages. Using linear DNA templates for CFPS will further enable the technology to reach its full potential, decreasing the experimental time by eliminating the steps of cloning, transformation, and plasmid extraction. Linear DNA can be rapidly and easily amplified by PCR to obtain high concentrations of the template, avoiding potential in vivo expression toxicity. However, linear DNA templates are rapidly degraded by exonucleases that are naturally present in the cell extracts. There are several strategies that have been proposed to tackle this problem, such as adding nuclease inhibitors or chemical modification of linear DNA ends for protection. All these strategies cost extra time and resources and are yet to obtain near-plasmid levels of protein expression. A detailed protocol for an alternative strategy is presented here for using linear DNA templates for CFPS. By using cell extracts from exonuclease-deficient knockout cells, linear DNA templates remain intact without requiring any end-modifications. We present the preparation steps of cell lysate from Escherichia coli BL21 Rosetta2 ΔrecBCD strain by sonication lysis and buffer calibration for Mg-glutamate (Mg-glu) and K-glutamate (K-glu) specifically for linear DNA. This method is able to achieve protein expression levels comparable to that from plasmid DNA in E. coli CFPS.
Show more [+] Less [-]Mechanical Separation and Protein Solubilization of the Outer and Inner Perivitelline Sublayers from Hen's Eggs Full text
2021
Brégeon, Mégane | Guyot, Nicolas | Réhault-Godbert, Sophie | Biologie des Oiseaux et Aviculture (BOA) ; Université de Tours (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work received a financial support from The French National Research Agency (EQLIPSE, ANR-19-CE21-0006). | ANR-19-CE21-0006,EQLIPSE,Amélioration de la qualité et des défenses antimicrobiennes internes de l'oeuf(2019)
Mechanical Separation and Protein Solubilization of the Outer and Inner Perivitelline Sublayers from Hen's Eggs Full text
2021
Brégeon, Mégane | Guyot, Nicolas | Réhault-Godbert, Sophie | Biologie des Oiseaux et Aviculture (BOA) ; Université de Tours (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work received a financial support from The French National Research Agency (EQLIPSE, ANR-19-CE21-0006). | ANR-19-CE21-0006,EQLIPSE,Amélioration de la qualité et des défenses antimicrobiennes internes de l'oeuf(2019)
International audience | The perivitelline layer that surrounds the egg yolk plays a fundamental role in fertilization, in egg defense, and in the development of the avian embryo. It is formed by two proteinaceous sublayers that are tightly associated and formed by distinct female reproductive organs. Both structures are assumed to have their own functional specificities, which remain to be defined. To characterize the function of proteins composing each sublayer, the first challenge is to establish the conditions that would allow for the mechanical separation of these two intricate layers, while limiting any structural damage. The second step is to optimize the experimental conditions to facilitate protein solubilization from these two sublayers, for subsequent biochemical analyses. The efficiency of this approach is assessed by analyzing the protein profile of each sublayer by Sodium Dodecyl Sulfate-Poly-Acrylamide Gel Electrophoresis (SDS-PAGE), which is expected to be distinct between the two structures. This two-step procedure remains simple; it requires classical biochemical equipment and reagents; and is compatible with further in-depth proteomics. It may also be transposed to other avian eggs for comparative biology, knowing that the structure and the composition of the perivitelline layer has been shown to have species-specific features. In addition, the non-denaturing conditions developed for sublayers separation (step 1) allow their structural analyses by scanning and transmission electron microscopy. It may also constitute the initial step for subsequent protein purification to analyze their respective biological activities and 3D structure, or to perform further immunohistochemical or functional analyses. Such studies would help to decipher the physiological function of these two sublayers, whose structural and functional integrities are determinant criteria of the reproductive success.
Show more [+] Less [-]Mechanical separation and protein solubilization of the outer and inner perivitelline sublayers from hen's eggs Full text
2021
Bregeon, Mégane | Guyot, Nicolas | Réhault-Godbert, Sophie
The perivitelline layer that surrounds the egg yolk plays a fundamental role in fertilization, in egg defense, and in the development of the avian embryo. It is formed by two proteinaceous sublayers that are tightly associated and formed by distinct female reproductive organs. Both structures are assumed to have their own functional specificities, which remain to be defined. To characterize the function of proteins composing each sublayer, the first challenge is to establish the conditions that would allow for the mechanical separation of these two intricate layers, while limiting any structural damage. The second step is to optimize the experimental conditions to facilitate protein solubilization from these two sublayers, for subsequent biochemical analyses. The efficiency of this approach is assessed by analyzing the protein profile of each sublayer by Sodium Dodecyl Sulfate-Poly-Acrylamide Gel Electrophoresis (SDS-PAGE), which is expected to be distinct between the two structures. This two-step procedure remains simple; it requires classical biochemical equipment and reagents; and is compatible with further in-depth proteomics. It may also be transposed to other avian eggs for comparative biology, knowing that the structure and the composition of the perivitelline layer has been shown to have species-specific features. In addition, the non-denaturing conditions developed for sublayers separation (step 1) allow their structural analyses by scanning and transmission electron microscopy. It may also constitute the initial step for subsequent protein purification to analyze their respective biological activities and 3D structure, or to perform further immunohistochemical or functional analyses. Such studies would help to decipher the physiological function of these two sublayers, whose structural and functional integrities are determinant criteria of the reproductive success.
Show more [+] Less [-]Analysis of SEC-SAXS data via EFA deconvolution and Scatter Full text
2021
Tully, Mark | Tarbouriech, Nicolas | Rambo, Robert | Hutin, Stephanie | European Synchrotron Radiation Facility [Grenoble] (ESRF) | Institut de biologie structurale (IBS - UMR 5075) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA) | DIAMOND Light source | StructDev (StructDev) ; Physiologie cellulaire et végétale (LPCV) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA) | Physiologie cellulaire et végétale (LPCV) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA) | Grants from the Service de Santé des Armées and the Délégation Générale pour l'Armement | ANR-13-BSV8-0014,REPLIPOX,Elucidation structurale et fonctionnelle du processus de réplication génomique des poxvirus(2013) | ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010) | ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
Analysis of SEC-SAXS data via EFA deconvolution and Scatter Full text
2021
Tully, Mark | Tarbouriech, Nicolas | Rambo, Robert | Hutin, Stephanie | European Synchrotron Radiation Facility [Grenoble] (ESRF) | Institut de biologie structurale (IBS - UMR 5075) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA) | DIAMOND Light source | StructDev (StructDev) ; Physiologie cellulaire et végétale (LPCV) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA) | Physiologie cellulaire et végétale (LPCV) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA) | Grants from the Service de Santé des Armées and the Délégation Générale pour l'Armement | ANR-13-BSV8-0014,REPLIPOX,Elucidation structurale et fonctionnelle du processus de réplication génomique des poxvirus(2013) | ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010) | ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
International audience | BioSAXS is a popular technique used in molecular and structural biology to determine the solution structure, particle size and shape, surface-to-volume ratio and conformational changes of macromolecules and macromolecular complexes. A high quality SAXS dataset for structural modeling must be from monodisperse, homogeneous samples and this is often only reached by a combination of inline chromatography and immediate SAXS measurement. Most commonly, size-exclusion chromatography is used to separate samples and exclude contaminants and aggregations from the particle of interest allowing SAXS measurements to be made from a well-resolved chromatographic peak of a single protein species. Still, in some cases, even inline purification is not a guarantee of monodisperse samples, either because multiple components are too close to each other in size or changes in shape induced through binding alter perceived elution time. In these cases, it may be possible to deconvolute the SAXS data of a mixture to obtain the idealized SAXS curves of individual components. Here, we show how this is achieved and the practical analysis of SEC-SAXS data is performed on ideal and difficult samples. Specifically, we show the SEC-SAXS analysis of the vaccinia E9 DNA polymerase exonuclease minus mutant.
Show more [+] Less [-]Analysis of sec-saxs data via efa deconvolution and scatter Full text
2021
Tully, Mark D | Tarbouriech, Nicolas | Rambo, Robert P | Hutin, Stephanie
BioSAXS is a popular technique used in molecular and structural biology to determine the solution structure, particle size and shape, surface-to-volume ratio and conformational changes of macromolecules and macromolecular complexes. A high quality SAXS dataset for structural modeling must be from monodisperse, homogeneous samples and this is often only reached by a combination of inline chromatography and immediate SAXS measurement. Most commonly, size-exclusion chromatography is used to separate samples and exclude contaminants and aggregations from the particle of interest allowing SAXS measurements to be made from a well-resolved chromatographic peak of a single protein species. Still, in some cases, even inline purification is not a guarantee of monodisperse samples, either because multiple components are too close to each other in size or changes in shape induced through binding alter perceived elution time. In these cases, it may be possible to deconvolute the SAXS data of a mixture to obtain the idealized SAXS curves of individual components. Here, we show how this is achieved and the practical analysis of SEC-SAXS data is performed on ideal and difficult samples. Specifically, we show the SEC-SAXS analysis of the vaccinia E9 DNA polymerase exonuclease minus mutant.
Show more [+] Less [-]Functional Magnetic Resonance Spectroscopy at 7 T in the Rat Barrel Cortex During Whisker Activation Full text
2019
Blanc, Jordy | Roumes, Hélène | Mazuel, Leslie | Massot, Philippe | Raffard, Gérard | Biran, Marc | Bouzier-Sore, Anne-Karine | Centre de résonance magnétique des systèmes biologiques (CRMSB) ; Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS) | Nutrition et Neurobiologie intégrée (NutriNeuro) ; Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Ecole nationale supérieure de chimie, biologie et physique | Imagerie Moléculaire et Stratégies Théranostiques (IMoST) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])
Functional Magnetic Resonance Spectroscopy at 7 T in the Rat Barrel Cortex During Whisker Activation Full text
2019
Blanc, Jordy | Roumes, Hélène | Mazuel, Leslie | Massot, Philippe | Raffard, Gérard | Biran, Marc | Bouzier-Sore, Anne-Karine | Centre de résonance magnétique des systèmes biologiques (CRMSB) ; Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS) | Nutrition et Neurobiologie intégrée (NutriNeuro) ; Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Ecole nationale supérieure de chimie, biologie et physique | Imagerie Moléculaire et Stratégies Théranostiques (IMoST) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])
International audience
Show more [+] Less [-]Functional magnetic resonance spectroscopy at 7 t in the rat barrel cortex during whisker activation Full text
2019
Blanc, Jordy | Roumes, Hélène | Mazuel, Leslie | Massot, Philippe | Raffard, Gérard | Biran, Marc | Bouzier-Sore, Anne-Karine
Nuclear magnetic resonance (NMR) spectroscopy offers the opportunity to measure cerebral metabolite contents in vivo and noninvasively. Thanks to technological developments over the last decade and the increase in magnetic field strength, it is now possible to obtain good resolution spectra in vivo in the rat brain. Neuroenergetics (i.e., the study of brain metabolism) and, especially, metabolic interactions between the different cell types have attracted more and more interest in recent years. Among these metabolic interactions, the existence of a lactate shuttle between neurons and astrocytes is still debated. It is, thus, of great interest to perform functional proton magnetic resonance spectroscopy (1H-MRS) in a rat model of brain activation and monitor lactate. However, the methyl lactate peak overlaps lipid resonance peaks and is difficult to quantify. The protocol described below allows metabolic and lactate fluctuations to be monitored in an activated brain area. Cerebral activation is obtained by whisker stimulation and 1H-MRS is performed in the corresponding activated barrel cortex, whose area is detected using blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI). All steps are fully described: the choice of anesthetics, coils, and sequences, achieving efficient whisker stimulation directly in the magnet, and data processing.
Show more [+] Less [-]Generation, amplification, and titration of recombinant respiratory syncytial viruses Full text
2019
Bouillier, Camille | Rincheval, Vincent | Sitterlin, Delphine | Blouquit-Laye, Sabine | Desquesnes, Aurore | Eleouet, Jean Francois | Gault, Elyanne | Rameix-Welti, Marie-Anne | Infection et inflammation (2I) ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de la Santé et de la Recherche Médicale (INSERM) | Unité de recherche Virologie et Immunologie Moléculaires (VIM (UR 0892)) ; Institut National de la Recherche Agronomique (INRA) | Laboratoire de Microbiologie ; Hôpital Raymond Poincareé
International audience | The use of recombinant viruses has become crucial in basic or applied virology. Reverse genetics has been proven to be an extremely powerful technology, both to decipher viral replication mechanisms and to study antivirals or provide development platform for vaccines. The construction and manipulation of a reverse genetic system for a negative-strand RNA virus such as a respiratory syncytial virus (RSV), however, remains delicate and requires special know-how. The RSV genome is a single-strand, negative-sense RNA of about 15 kb that serves as a template for both viral RNA replication and transcription. Our reverse genetics system uses a cDNA copy of the human RSV long strain genome (HRSV). This cDNA, as well as cDNAs encoding viral proteins of the polymerase complex (L, P, N, and M2-1), are placed in individual expression vectors under T7 polymerase control sequences. The transfection of these elements in BSR-T7/5 cells, which stably express T7 polymerase, allows the cytoplasmic replication and transcription of the recombinant RSV, giving rise to genetically modified virions. A new RSV, which is present at the cell surface and in the culture supernatant of BSRT7/5, is gathered to infect human HEp-2 cells for viral amplification. Two or three rounds of amplification are needed to obtain viral stocks containing 1 x 10^6 to 1 x 10^7 plaque-forming units (PFU)/mL. Methods for the optimal harvesting, freezing, and titration of viral stocks are described here in detail. We illustrate the protocol presented here by creating two recombinant viruses respectively expressing free green fluorescent protein (GFP) (RSV-GFP) or viral M2-1 fused to GFP (RSV-M2-1-GFP). We show how to use RSV-GFP to quantify RSV replication and the RSV-M2-1-GFP to visualize viral structures, as well as viral protein dynamics in live cells, by using video microscopy techniques.
Show more [+] Less [-]