Refine search
Results 41-50 of 932
From constructs to crystals – towards structure determination of β-barrel outer membrane proteins Full text
2016
Noinaj, Nicholas | Mayclin, Stephen | Stanley, Ann M. | Jao, Christine C. | Buchanan, Susan K.
Membrane proteins serve important functions in cells such as nutrient transport, motility, signaling, survival and virulence, yet constitute only ~1% percent of known structures. There are two types of membrane proteins, α-helical and β-barrel. While α-helical membrane proteins can be found in nearly all cellular membranes, β-barrel membrane proteins can only be found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. One common bottleneck in structural studies of membrane proteins in general is getting enough pure sample for analysis. In hopes of assisting those interested in solving the structure of their favorite β-barrel outer membrane protein (OMP), general protocols are presented for the production of target β-barrel OMPs at levels useful for structure determination by either X-ray crystallography and/or NMR spectroscopy. Here, we outline construct design for both native expression and for expression into inclusion bodies, purification using an affinity tag, and crystallization using detergent screening, bicelle, and lipidic cubic phase techniques. These protocols have been tested and found to work for most OMPs from Gram-negative bacteria; however, there are some targets, particularly for mitochondria and chloroplasts that may require other methods for expression and purification. As such, the methods here should be applicable for most projects that involve OMPs from Gram-negative bacteria, yet the expression levels and amount of purified sample will vary depending on the target OMP.
Show more [+] Less [-]Unbiased deep sequencing of rna viruses from clinical samples Full text
2016
Matranga, Christian B. | Gladden-Young, Adrianne | Qu, James | Winnicki, Sarah | Nosamiefan, Dolo | Levin, Joshua Z. | Sabeti, Pardis C.
Here we outline a next-generation RNA sequencing protocol that enables de novo assemblies and intra-host variant calls of viral genomes collected from clinical and biological sources. The method is unbiased and universal; it uses random primers for cDNA synthesis and requires no prior knowledge of the viral sequence content. Before library construction, selective RNase H-based digestion is used to deplete unwanted RNA — including poly(rA) carrier and ribosomal RNA — from the viral RNA sample. Selective depletion improves both the data quality and the number of unique reads in viral RNA sequencing libraries. Moreover, a transposase-based 'tagmentation' step is used in the protocol as it reduces overall library construction time. The protocol has enabled rapid deep sequencing of over 600 Lassa and Ebola virus samples-including collections from both blood and tissue isolates-and is broadly applicable to other microbial genomics studies.
Show more [+] Less [-]Production of double-stranded dna ministrings Full text
2016
Wong, Shirley | Lam, Peggy | Nafissi, Nafiseh | Denniss, Steven | Slavcev, Roderick
We constructed linear covalently closed (LCC) DNA minivectors as a non-viral gene-delivery vector alternative produced via a simple platform in vivo. DNA ministrings possess a heightened safety profile and also efficiently deliver DNA cargo to targeted cells. Conventional DNA vectors carry undesirable prokaryotic sequences, including antibiotic resistance genes, CpG motifs, and bacterial origins of replication, which may lead to the stimulation of host immunological responses. The bioavailability of conventional DNA vectors is also compromised due to their larger molecular size. Their circular nature may also impart chromosomal integration, leading to insertional mutagenesis. Bacterial sequences are excised from DNA minivectors, leaving only the gene of interest (GOI) and necessary eukaryotic expression elements. Our LCC DNA minivectors, or DNA ministrings, are devoid of immunogenic bacterial sequences; therefore improving their bioavailability and GOI expression. In the event of vector integration into the chromosome, the LCC DNA ministring will lethally disrupt the host chromosome, thereby removing the potentially dangerous mutant from the proliferating cell population. Consequently, DNA ministrings offer the benefits of 'minicircle' DNA while eliminating the potential for undesirable vector integration events. In comparison to conventional plasmids and their isogenic circular covalently closed (CCC) counterparts, DNA ministrings demonstrate superior bioavailability, transfection efficiency, and cytoplasmic kinetics - they thus require lower amounts of cationic surfactants for effective transfection of target cells. We have constructed a one-step inducible in vivo system for the production of DNA ministrings in Escherichia coli that is simple to use, rapid, and scalable.
Show more [+] Less [-]The assembly and application of 'shear rings': a novel endothelial model for orbital, unidirectional and periodic fluid flow and shear stress Full text
2016
White, Luke A. | Stevenson, Emily V. | Yun, J Winny | Eshaq, Randa | Harris, Norman R. | Mills, David K. | Minagar, Alireza | Couraud, Pierre-Olivier | Alexander, J Steven
Deviations from normal levels and patterns of vascular fluid shear play important roles in vascular physiology and pathophysiology by inducing adaptive as well as pathological changes in endothelial phenotype and gene expression. In particular, maladaptive effects of periodic, unidirectional flow induced shear stress can trigger a variety of effects on several vascular cell types, particularly endothelial cells. While by now endothelial cells from diverse anatomic origins have been cultured, in-depth analyses of their responses to fluid shear have been hampered by the relative complexity of shear models (e.g., parallel plate flow chamber, cone and plate flow model). While these all represent excellent approaches, such models are technically complicated and suffer from drawbacks including relatively lengthy and complex setup time, low surface areas, requirements for pumps and pressurization often requiring sealants and gaskets, creating challenges to both maintenance of sterility and an inability to run multiple experiments. However, if higher throughput models of flow and shear were available, greater progress on vascular endothelial shear responses, particularly periodic shear research at the molecular level, might be more rapidly advanced. Here, we describe the construction and use of shear rings: a novel, simple-to-assemble, and inexpensive tissue culture model with a relatively large surface area that easily allows for a high number of experimental replicates in unidirectional, periodic shear stress studies on endothelial cells.
Show more [+] Less [-]Data acquisition protocol for determining embedded sensitivity functions Full text
2016
Meyer, Janette J. | Adams, Douglas E. | Silvers, Janene
The effectiveness of many structural health monitoring techniques depends on the placement of sensors and the location of input forces. Algorithms for determining optimal sensor and forcing locations typically require data, either simulated or measured, from the damaged structure. Embedded sensitivity functions provide an approach for determining the best available sensor location to detect damage with only data from the healthy structure. In this video and manuscript, the data acquisition procedure and best practices for determining the embedded sensitivity functions of a structure is presented. The frequency response functions used in the calculation of the embedded sensitivity functions are acquired using modal impact testing. Data is acquired and representative results are shown for a residential scale wind turbine blade. Strategies for evaluating the quality of the data being acquired are provided during the demonstration of the data acquisition process.
Show more [+] Less [-]Administering and detecting protein marks on arthropods for dispersal research Full text
2016
Hagler, James R. | Machtley, Scott A.
Monitoring arthropod movement is often required to better understand associated population dynamics, dispersal patterns, host plant preferences, and other ecological interactions. Arthropods are usually tracked in nature by tagging them with a unique mark and then re-collecting them over time and space to determine their dispersal capabilities. In addition to actual physical tags, such as colored dust or paint, various types of proteins have proven very effective for marking arthropods for ecological research. Proteins can be administered internally and/or externally. The proteins can then be detected on recaptured arthropods with a protein-specific enzyme-linked immunosorbent assay (ELISA). Here we describe protocols for externally and internally tagging arthropods with protein. Two simple experimental examples are demonstrated: (1) an internal protein mark introduced to an insect by providing a protein-enriched diet and (2) an external protein mark topically applied to an insect using a medical nebulizer. We then relate a step-by-step guide of the sandwich and indirect ELISA methods used to detect protein marks on the insects. In this demonstration, various aspects of the acquisition and detection of protein markers on arthropods for mark-release-recapture, mark-capture, and self-mark-capture types of research are discussed, along with the various ways that the immunomarking procedure has been adapted to suit a wide variety of research objectives.
Show more [+] Less [-]In Vivo functional brain imaging approach based on bioluminescent calcium indicator gfp-aequorin Full text
2016
Lark, Arianna R. | Kitamoto, Toshihiro | Martin, Jean-René
Functional in vivo imaging has become a powerful approach to study the function and physiology of brain cells and structures of interest. Recently a new method of Ca2+-imaging using the bioluminescent reporter GFP-aequorin (GA) has been developed. This new technique relies on the fusion of the GFP and aequorin genes, producing a molecule capable of binding calcium and — with the addition of its cofactor coelenterazine — emitting bright light that can be monitored through a photon collector. Transgenic lines carrying the GFP-aequorin gene have been generated for both mice and Drosophila. In Drosophila, the GFP-aequorin gene has been placed under the control of the GAL4/UAS binary expression system allowing for targeted expression and imaging within the brain. This method has subsequently been shown to be capable of detecting both inward Ca2+-transients and Ca2+-released from inner stores. Most importantly it allows for a greater duration in continuous recording, imaging at greater depths within the brain, and recording at high temporal resolutions (up to 8.3 msec). Here we present the basic method for using bioluminescent imaging to record and analyze Ca2+-activity within the mushroom bodies, a structure central to learning and memory in the fly brain.
Show more [+] Less [-]Motor and hippocampal dependent spatial learning and reference memory assessment in a transgenic rat model of alzheimer's disease with stroke Full text
2016
Au, Jennifer L. | Weishaupt, Nina | Nell, Hayley J. | Whitehead, Shawn N. | Cechetto, David F.
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that results in neurodegeneration and memory loss. While age is a major risk factor for AD, stroke has also been implicated as a risk factor and an exacerbating factor. The co-morbidity of stroke and AD results in worsened stroke-related motor control and AD-related cognitive deficits when compared to each condition alone. To model the combined condition of stroke and AD, a novel transgenic rat model of AD, with a mutated form of amyloid precursor protein (a key protein involved in the development of AD) incorporated into its DNA, is given a small unilateral striatal stroke. For a model with the combination of both stroke and AD, behavioral tests that assess stroke-related motor control, locomotion and AD-related cognitive function must be implemented. The cylinder task involves a cost-efficient, multipurpose apparatus that assesses spontaneous forelimb motor use. In this task, a rat is placed in a cylindrical apparatus, where the rat will spontaneously rear and contact the wall of the cylinder with its forelimbs. These contacts are considered forelimb motor use and quantified during video analysis after testing. Another cost-efficient motor task implemented is the beam-walk task, which assesses forelimb control, hindlimb control and locomotion. This task involves a rat walking across a wooden beam allowing for the assessment of limb motor control through analysis of forelimb slips, hindlimb slips and falls. Assessment of learning and memory is completed with Morris water maze for this behavioral paradigm. The protocol starts with spatial learning, whereby the rat locates a stationary hidden platform. After spatial learning, the platform is removed and both short-term and long-term spatial reference memory is assessed. All three of these tasks are sensitive to behavioral differences and completed within 28 days for this model, making this paradigm time-efficient and cost-efficient.
Show more [+] Less [-]Fluorescence anisotropy as a tool to study protein-protein interactions Full text
2016
Gijsbers, Abril | Nishigaki, Takuya | Sánchez-Puig, Nuria
Protein-protein interactions play an essential role in the function of a living organism. Once an interaction has been identified and validated it is necessary to characterize it at the structural and mechanistic level. Several biochemical and biophysical methods exist for such purpose. Among them, fluorescence anisotropy is a powerful technique particularly used when the fluorescence intensity of a fluorophore-labeled protein remains constant upon protein-protein interaction. In this technique, a fluorophore-labeled protein is excited with vertically polarized light of an appropriate wavelength that selectively excites a subset of the fluorophores according to their relative orientation with the incoming beam. The resulting emission also has a directionality whose relationship in the vertical and horizontal planes defines anisotropy (r) as follows: r=(IVV-IVH)/(IVV+2IVH), where IVV and IVH are the fluorescence intensities of the vertical and horizontal components, respectively. Fluorescence anisotropy is sensitive to the rotational diffusion of a fluorophore, namely the apparent molecular size of a fluorophore attached to a protein, which is altered upon protein-protein interaction. In the present text, the use of fluorescence anisotropy as a tool to study protein-protein interactions was exemplified to address the binding between the protein mutated in the Shwachman-Diamond Syndrome (SBDS) and the Elongation factor like-1 GTPase (EFL1). Conventionally, labeling of a protein with a fluorophore is carried out on the thiol groups (cysteine) or in the amino groups (the N-terminal amine or lysine) of the protein. However, SBDS possesses several cysteines and lysines that did not allow site directed labeling of it. As an alternative technique, the dye 4',5'-bis(1,3,2 dithioarsolan-2-yl) fluorescein was used to specifically label a tetracysteine motif, Cys-Cys-Pro-Gly-Cys-Cys, genetically engineered in the C-terminus of the recombinant SBDS protein. Fitting of the experimental data provided quantitative and mechanistic information on the binding mode between these proteins.
Show more [+] Less [-]Assessing specificity of anticancer drugs In Vitro Full text
2016
Kluwe, Lan
A procedure for assessing specificity of anticancer drugs in vitro using cultures containing both tumor and non-tumor cells is demonstrated. The key element is the quantitative determination of a tumor-specific genetic alteration in relation to a universal sequence using a dual-probe digital PCR assay and the subsequent calculation of the proportion of tumor cells. The assay is carried out on a culture containing tumor cells of an established line and spiked-in non-tumor cells. The mixed culture is treated with a test drug at various concentrations. After the treatment, DNA is prepared directly from the survived adhesive cells in wells of 96-well plates using a simple and inexpensive method, and subjected to a dual-probe digital PCR assay for measuring a tumor-specific genetic alteration and a reference universal sequence. In the present demonstration, a heterozygous deletion of the NF1 gene is used as the tumor-specific genetic alteration and a RPP30 gene as the reference gene. Using the ratio NF1/RPP30, the proportion of tumor cells was calculated. Since the dose-dependent change of the proportion of tumor cells provides an in vitro indication for specificity of the drug, this genetic and cell-based in vitro assay will likely have application potential in drug discovery. Furthermore, for personalized cancer-care, this genetic- and cell-based tool may contribute to optimizing adjuvant chemotherapy by means of testing efficacy and specificity of candidate drugs using primary cultures of individual tumors.
Show more [+] Less [-]