Refine search
Results 81-90 of 972
A computational method to quantify fly circadian activity Full text
2017
In most animals and plants, circadian clocks orchestrate behavioral and molecular processes and synchronize them to the daily light-dark cycle. Fundamental mechanisms that underlie this temporal control are widely studied using the fruit fly Drosophila melanogaster as a model organism. In flies, the clock is typically studied by analyzing multiday locomotor recording. Such a recording shows a complex bimodal pattern with two peaks of activity: a morning peak that happens around dawn, and an evening peak that happens around dusk. These two peaks together form a waveform that is very different from sinusoidal oscillations observed in clock genes, suggesting that mechanisms in addition to the clock have profound effects in producing the observed patterns in behavioral data. Here we provide instructions on using a recently developed computational method that mathematically describes temporal patterns in fly activity. The method fits activity data with a model waveform that consists of four exponential terms and nine independent parameters that fully describe the shape and size of the morning and evening peaks of activity. The extracted parameters can help elucidate the kinetic mechanisms of substrates that underlie the commonly observed bimodal activity patterns in fly locomotor rhythms.
Show more [+] Less [-]Nanopore dna sequencing for metagenomic soil analysis Full text
2017
This article describes the steps for construction of a DNA library from soil, preparation and use of the nanopore flow cell, and analysis of the DNA sequences identified using computer software. Nanopore DNA sequencing is a flexible technique that allows for rapid microbial genome sequencing to identify bacterial and viral species, to characterize bacterial strains, and to detect genetic mutations that confer resistance to antibiotics. The advantages of nanopore sequencing (NS) for life sciences include its low complexity, reduced cost, and rapid real-time sequencing of purified genomic DNA, PCR amplicons, cDNA samples, or RNA. NS is an example of "strand sequencing" which involves sequencing DNA by guiding a single stranded DNA molecule through a nanopore that is inserted into a synthetic polymer membrane. The membrane has an electrical current applied across it, so as the individual bases pass through the nanopore the electrical current is disrupted to varying degrees by the four nucleotide bases. The identification of each nucleotide occurs by detecting the characteristic modulation of the electrical current by the different bases as they pass through the nanopore. The NS system consists of a handheld, USB powered portable device and a disposable flow cell that contains a nanopore array. The portable device plugs into a standard laptop computer that reads and records the DNA sequence using computer software.
Show more [+] Less [-]A web tool for generating high quality machine-readable biological pathways Full text
2017
Ramirez-Gaona, Miguel | Marcu, Ana | Pon, Allison | Grant, Jason | Wu, Tsung-Liang | Wishart, David S.
PathWhiz is a web server built to facilitate the creation of colorful, interactive, visually pleasing pathway diagrams that are rich in biological information. The pathways generated by this online application are machine-readable and fully compatible with essentially all web-browsers and computer operating systems. It uses a specially developed, web-enabled pathway drawing interface that permits the selection and placement of different combinations of pre-drawn biological or biochemical entities to depict reactions, interactions, transport processes and binding events. This palette of entities consists of chemical compounds, proteins, nucleic acids, cellular membranes, subcellular structures, tissues, and organs. All of the visual elements in it can be interactively adjusted and customized. Furthermore, because this tool is a web server, all pathways and pathway elements are publicly accessible. This kind of pathway "crowd sourcing" means that PathWhiz already contains a large and rapidly growing collection of previously drawn pathways and pathway elements. Here we describe a protocol for the quick and easy creation of new pathways and the alteration of existing pathways. To further facilitate pathway editing and creation, the tool contains replication and propagation functions. The replication function allows existing pathways to be used as templates to create or edit new pathways. The propagation function allows one to take an existing pathway and automatically propagate it across different species. Pathways created with this tool can be "re-styled" into different formats (KEGG-like or text-book like), colored with different backgrounds, exported to BioPAX, SBGN-ML, SBML, or PWML data exchange formats, and downloaded as PNG or SVG images. The pathways can easily be incorporated into online databases, integrated into presentations, posters or publications, or used exclusively for online visualization and exploration. This protocol has been successfully applied to generate over 2,000 pathway diagrams, which are now found in many online databases including HMDB, DrugBank, SMPDB, and ECMDB.
Show more [+] Less [-]A simple red blood cell lysis method for the establishment of b lymphoblastoid cell lines Full text
2017
Liu, Xi | Xu, Chongfeng | Duan, Ziyuan
A number of methods exist for the transformation of B lymphocytes by the Epstein Barr virus in vitro into immortalized cell lines. We have developed a new method with a powerful and simple strategy for the establishment of B-LCLs, the red blood cell lysis method. This method simplified the PBMC separation procedure with red blood cell removal, and used as little as 0.5 mL of whole blood for establishing EBV-immortalized cell lines, which can proliferate to large cell numbers in a relatively short amount time with a 100% success rate. The method is simple, reliable, time saving, and applicable to treating a large number of the clinical samples.
Show more [+] Less [-]Müller glia cell activation in a laser-induced retinal degeneration and regeneration model in zebrafish Full text
2017
Conedera, Federica M. | Arendt, Petra | Trepp, Carolyn | Tschopp, Markus | Enzmann, Volker
A fascinating difference between teleost and mammals is the lifelong potential of the teleost retina for retinal neurogenesis and regeneration after severe damage. Investigating the regeneration pathways in zebrafish might bring new insights to develop innovative strategies for the treatment of retinal degenerative diseases in mammals. Herein, we focused on the induction of a focal lesion to the outer retina in adult zebrafish by means of a 532 nm diode laser. A localized injury allows investigating biological processes that take place during retinal degeneration and regeneration directly at the area of damage. Using non-invasive optical coherence tomography (OCT), we were able to define the location of the damaged area and monitor subsequent regeneration in vivo. Indeed, OCT imaging produces high-resolution, cross-sectional images of the zebrafish retina, providing information which was previously only available with histological analyses. In order to confirm the data from real-time OCT, histological sections were performed and regenerative response after the induction of the retinal injury was investigated by immunohistochemistry.
Show more [+] Less [-]Preparation of chitosan-based injectable hydrogels and its application in 3d cell culture Full text
2017
Li, Yongsan | Zhang, Yaling | Wei, Yan | Tao, Lei
The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.
Show more [+] Less [-]Scale-up chemical synthesis of thermally-activated delayed fluorescence emitters based on the dibenzothiophene-s,s-dioxide core Full text
2017
Vybornyi, Oleh | Findlay, Neil J. | Skabara, Peter J.
We report a procedure to linearly scale-up the synthesis of 2,8-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)dibenzothiophene-S,S-dioxide (compound 4) and 2,8-bis(10H-phenothiazin-10-yl)dibenzothiophene-S,S-dioxide (compound 5) using Buchwald-Hartwig cross-coupling reaction conditions. In addition, we demonstrate a scaled-up synthesis of all non-commercially available starting materials that are required for the amination cross-coupling reaction. In the present article, we provide the detailed synthetic procedures for all of the described compounds, alongside their spectral characterization. This work shows the possibility to produce organic molecules for optoelectronic applications on a large scale, which facilitates their implementation into real world devices.
Show more [+] Less [-]New methods to study gustatory coding Full text
2017
Boronat-García, Alejandra | Reiter, Sam | Sun, Kui | Stopfer, Mark
The sense of taste allows animals to detect chemicals in the environment, giving rise to behaviors critical for survival. When Gustatory Receptor Neurons (GRNs) detect tastant molecules, they encode information about the identity and concentration of the tastant as patterns of electrical activity that then propagate to follower neurons in the brain. These patterns constitute internal representations of the tastant, which then allow the animal to select actions and form memories. The use of relatively simple animal models has been a powerful tool to study basic principles in sensory coding. Here, we propose three new methods to study gustatory coding using the moth Manduca sexta. First, we present a dissection procedure for exposing the maxillary nerves and the subesophageal zone (SEZ), allowing recording of the activity of GRNs from their axons. Second, we describe the use of extracellular electrodes to record the activity of multiple GRNs by placing tetrode wires directly into the maxillary nerve. Third, we present a new system for delivering and monitoring, with high temporal precision, pulses of different tastants. These methods allow the characterization of neuronal responses in vivo directly from GRNs before, during and after tastants are delivered. We provide examples of voltage traces recorded from multiple GRNs, and present an example of how a spike sorting technique can be applied to the data to identify the responses of individual neurons. Finally, to validate our recording approach, we compare extracellular recordings obtained from GRNs with tetrodes to intracellular recordings obtained with sharp glass electrodes.
Show more [+] Less [-]Analysis of the gap junction-dependent transfer of mirna with 3d-frap microscopy Full text
2017
Lemcke, Heiko | Voronina, Natalia | Steinhoff, Gustav | David, Robert
Small antisense RNAs, like miRNA and siRNA, play an important role in cellular physiology and pathology and, moreover, can be used as therapeutic agents in the treatment of several diseases. The development of new, innovative strategies for miRNA/siRNA therapy is based on an extensive knowledge of the underlying mechanisms. Recent data suggest that small RNAs are exchanged between cells in a gap junction-dependent manner, thereby inducing gene regulatory effects in the recipient cell. Molecular biological techniques and flow cytometric analysis are commonly used to study the intercellular exchange of miRNA. However, these methods do not provide high temporal resolution, which is necessary when studying the gap junctional flux of molecules. Therefore, to investigate the impact of miRNA/siRNA as intercellular signaling molecules, novel tools are needed that will allow for the analysis of these small RNAs at the cellular level. The present protocol describes the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) microscopy to elucidating the gap junction-dependent exchange of miRNA molecules between cardiac cells. Importantly, this straightforward and non-invasive live-cell imaging approach allows for the visualization and quantification of the gap junctional shuttling of fluorescently labeled small RNAs in real time, with high spatio-temporal resolution. The data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation, where small RNAs act as signaling molecules within the intercellular network.
Show more [+] Less [-]Rescue and characterization of recombinant virus from a new world zika virus infectious clone Full text
2017
Weger-Lucarelli, James | Duggal, Nisha K. | Brault, Aaron C. | Geiss, Brian J. | Ebel, Gregory D.
Infectious cDNA clones allow for genetic manipulation of a virus, thus facilitating work on vaccines, pathogenesis, replication, transmission and viral evolution. Here we describe the construction of an infectious clone for Zika virus (ZIKV), which is currently causing an explosive outbreak in the Americas. To prevent toxicity to bacteria that is commonly observed with flavivirus-derived plasmids, we generated a two-plasmid system which separates the genome at the NS1 gene and is more stable than full-length constructs that could not be successfully recovered without mutations. After digestion and ligation to join the two fragments, full-length viral RNA can be generated by in vitro transcription with T7 RNA polymerase. Following electroporation of transcribed RNA into cells, virus was recovered that exhibited similar in vitro growth kinetics and in vivo virulence and infection phenotypes in mice and mosquitoes, respectively.
Show more [+] Less [-]