Refine search
Results 1-10 of 161
Protocol for culturing sympathetic neurons from rat superior cervical ganglia (scg) Full text
2009
Zareen, Neela | Greene, Lloyd A.
The superior cervical ganglia (SCG) in rats are small, glossy, almond-shaped structures that contain sympathetic neurons. These neurons provide sympathetic innervations for the head and neck regions and they constitute a well-characterized and relatively homogeneous population (4). Sympathetic neurons are dependent on nerve growth factor (NGF) for survival, differentiation and axonal growth and the wide-spread availability of NGF facilitates their culture and experimental manipulation (2, 3, 6). For these reasons, cultured sympathetic neurons have been used in a wide variety of studies including neuronal development and differentiation, mechanisms of programmed and pathological cell death, and signal transduction (1, 2, 5, and 6). Dissecting out the SCG from newborn rats and culturing sympathetic neurons is not very complicated and can be mastered fairly quickly. In this article, we will describe in detail how to dissect out the SCG from newborn rat pups and to use them to establish cultures of sympathetic neurons. The article will also describe the preparatory steps and the various reagents and equipment that are needed to achieve this.
Show more [+] Less [-]Intranuclear microinjection of dna into dissociated adult mammalian neurons Full text
2009
Lu, Van B. | Williams, Damian J. | Won, Yu-Jin | Ikeda, Stephen R.
Primary neuronal cell cultures are valuable tools to study protein function since they represent a more biologically relevant system compared to immortalized cell lines. However, the post-mitotic nature of primary neurons prevents effective heterologous protein expression using common procedures such as electroporation or chemically-mediated transfection. Thus, other techniques must be employed in order to effectively express proteins in these non-dividing cells. In this article, we describe the steps required to perform intranuclear injections of cDNA constructs into dissociated adult sympathetic neurons. This technique, which has been applied to different types of neurons, can successfully induce heterologous protein expression. The equipment essential for the microinjection procedure includes an inverted microscope to visualize cells, a glass injection pipet filled with cDNA solution that is connected to a N2(g) pressure delivery system, and a micromanipulator. The micromanipulator coordinates the injection motion of microinjection pipet with a brief pulse of pressurized N2 to eject cDNA solution from the pipet tip. This technique does not have the toxicity associated with many other transfection methods and enables multiple DNA constructs to be expressed at a consistent ratio. The low number of injected cells makes the microinjection procedure well suited for single cell studies such as electrophysiological recordings and optical imaging, but may not be ideal for biochemical assays that require a larger number of cells and higher transfection efficiencies. Although intranuclear microinjections require an investment of equipment and time, the ability to achieve high levels of heterologous protein expression in a physiologically relevant environment makes this technique a very useful tool to investigate protein function.
Show more [+] Less [-]Methylated dna immunoprecipitation Full text
2009
Thu, Kelsie L. | Vucic, Emily A. | Kennett, Jennifer Y. | Heryet, Cameron | Brown, Carolyn J. | Lam, Wan L. | Wilson, Ian M.
The identification of DNA methylation patterns is a common procedure in the study of epigenetics, as methylation is known to have significant effects on gene expression, and is involved with normal development as well as disease 1-4. Thus, the ability to discriminate between methylated DNA and non-methylated DNA is essential for generating methylation profiles for such studies. Methylated DNA immunoprecipitation (MeDIP) is an efficient technique for the extraction of methylated DNA from a sample of interest 5-7. A sample of as little as 200 ng of DNA is sufficient for the antibody, or immunoprecipitation (IP), reaction. DNA is sonicated into fragments ranging in size from 300-1000 bp, and is divided into immunoprecipitated (IP) and input (IN) portions. IP DNA is subsequently heat denatured and then incubated with anti-5'mC, allowing the monoclonal antibody to bind methylated DNA. After this, magnetic beads containing a secondary antibody with affinity for the primary antibody are added, and incubated. These bead-linked antibodies will bind the monoclonal antibody used in the first step. DNA bound to the antibody complex (methylated DNA) is separated from the rest of the DNA by using a magnet to pull the complexes out of solution. Several washes using IP buffer are then performed to remove the unbound, non-methylated DNA. The methylated DNA/antibody complexes are then digested with Proteinase K to digest the antibodies leaving only the methylated DNA intact. The enriched DNA is purified by phenol:chloroform extraction to remove the protein matter and then precipitated and resuspended in water for later use. PCR techniques can be used to validate the efficiency of the MeDIP procedure by analyzing the amplification products of IP and IN DNA for regions known to lack and known to contain methylated sequences. The purified methylated DNA can then be used for locus-specific (PCR) or genome-wide (microarray and sequencing) methylation studies, and is particularly useful when applied in conjunction with other research tools such as gene expression profiling and array comparative genome hybridization (CGH) 8. Further investigation into DNA methylation will lead to the discovery of new epigenetic targets, which in turn, may be useful in developing new therapeutic or prognostic research tools for diseases such as cancer that are characterized by aberrantly methylated DNA 2, 4, 9-11.
Show more [+] Less [-]Tissue targeted embryonic chimeras: zebrafish gastrula cell transplantation Full text
2009
Certain fundamental questions in the field of developmental biology can only be answered when cells are placed in novel environments or when small groups of cells in a larger context are altered. Watching how one cell interacts with and behaves in a unique environment is essential to characterizing cell functions. Determining how the localized misexpression of a specific protein influences surrounding cells provides insightful information on the roles that protein plays in a variety of developmental processes. Our lab uses the zebrafish model system to uniquely combine genetic approaches with classical transplantation techniques to generate genotypic or phenotypic chimeras. We study neuron-glial cell interactions during the formation of forebrain commissures in zebrafish. This video describes a method that allows our lab to investigate the role of astroglial populations in the diencephalon and the roles of specific guidance cues that influence projecting axons as they cross the midline. Due to their transparency zebrafish embryos are ideal models for this type of ectopic cell placement or localized gene misexpression. Tracking transplanted cells can be accomplished using a vital dye or a transgenic fish line expressing a fluorescent protein. We demonstrate here how to prepare donor embryos with a vital dye tracer for transplantation, as well as how to extract and transplant cells from one gastrula staged embryo to another. We present data showing ectopic GFP+ transgenic cells within the forebrain of zebrafish embryos and characterize the location of these cells with respect to forebrain commissures. In addition, we show laser scanning confocal timelapse microscopy of Alexa 594 labeled cells transplanted into a GFP+ transgenic host embryo. These data provide evidence that gastrula staged transplantation enables the targeted positioning of ectopic cells to address a variety of questions in Developmental Biology.
Show more [+] Less [-]Live imaging of glial cell migration in the drosophila eye imaginal disc Full text
2009
Glial cells of both vertebrate and invertebrate organisms must migrate to final target regions in order to ensheath and support associated neurons. While recent progress has been made to describe the live migration of glial cells in the developing pupal wing (1), studies of Drosophila glial cell migration have typically involved the examination of fixed tissue. Live microscopic analysis of motile cells offers the ability to examine cellular behavior throughout the migratory process, including determining the rate of and changes in direction of growth. Paired with use of genetic tools, live imaging can be used to determine more precise roles for specific genes in the process of development. Previous work by Silies et al. (2) has described the migration of glia originating from the optic stalk, a structure that connects the developing eye and brain, into the eye imaginal disc in fixed tissue. Here we outline a protocol for examining the live migration of glial cells into the Drosophila eye imaginal disc. We take advantage of a Drosophila line that expresses GFP in developing glia to follow glial cell progression in wild type and in mutant animals.
Show more [+] Less [-]Fluorescent labeling of Drosophila heart structures Full text
2009
Alayari, Nakissa N. | Vogler, Georg | Taghli-Lamallem, Ouarda | Ocorr, Karen | Bodmer, Rolf | Cammarato, Anthony
The Drosophila melanogaster dorsal vessel, or heart, is a tubular structure comprised of a single layer of contractile cardiomyocytes, pericardial cells that align along each side of the heart wall, supportive alary muscles and, in adults, a layer of ventral longitudinal muscle cells. The contractile fibers house conserved constituents of the muscle cytoarchitecture including densely packed bundles of myofibrils and cytoskeletal/submembranous protein complexes, which interact with homologous components of the extracellular matrix. Here we describe a protocol for the fixation and the fluorescent labeling of particular myocardial elements from the hearts of dissected larvae and semi-intact adult Drosophila. Specifically, we demonstrate the labeling of sarcomeric F-actin and of α-actinin in larval hearts. Additionally, we perform labeling of F-actin and α-actinin in myosin-GFP expressing adult flies and of α-actinin and pericardin, a type IV extracellular matrix collagen, in wild type adult hearts. Particular attention is given to a mounting strategy for semi-intact adult hearts that minimizes handling and optimizes the opportunity for maintaining the integrity of the cardiac tubes and the associated tissues. These preparations are suitable for imaging via fluorescent and confocal microscopy. Overall, this procedure allows for careful and detailed analysis of the structural characteristics of the heart from a powerful genetically tractable model system.
Show more [+] Less [-]Using the horseshoe crab, Limulus Polyphemus, in vision research Full text
2009
Liu, Jiahui S. | Passaglia, Christopher L.
The American horseshoe crab, Limulus Polyphemus is one of the oldest creatures on earth, and the animal continues to play an indispensable role in biomedical research. Not only does their blood contain special cells that scientists use to detect bacteriotoxins in our medicines, but their eyes also contain a neural network that has provided much insight about physiological processes operating in our visual system, such as light adaptation and lateral inhibition. The horseshoe crab remains an attractive model for vision research because the animal is large and hardy for an invertebrate, its retinal neurons are big and easily accessible, its visual system is compact and extensively studied, and its visual behavior is well defined. Moreover, the structure and function of the eyes are modulated on a daily basis by a circadian clock in the animal s brain. In short, the visual system of horseshoe crabs is simple enough to be understood yet complex enough to be interesting. In this video we present three electrophysiological paradigms for investigating the neural basis of vision that can be performed in vivo with Limulus. They are electroretinogram recording, optic nerve recording, and intraretinal recording. Electroretinogram (ERG) recordings measure with a surface electrode the summed electrical response of all cells in the eye to a flash of light. They can be used to monitor the overall sensitivity of the eye for prolong periods of time. Optic nerve recordings measure the spiking activity of single nerve fibers with an extracellular microsuction electrode. They can be used to study visual messages conveyed from the eye to the brain as well as circadian-clock messages fed back from the brain to the eye. Intraretinal recordings measure with an intracellular microelectrode the voltage fluctuations induced by light in individual cells of the eye. They can be used to elucidate cellular mechanisms of retinal processing.
Show more [+] Less [-]Isolation and large scale expansion of adult human endothelial colony forming progenitor cells Full text
2009
Hofmann, Nicole A. | Reinisch, Andreas | Strunk, Dirk
This paper introduces a novel recovery strategy for endothelial colony forming progenitor cells (ECFCs) from heparinized but otherwise unmanipulated adult human peripheral blood within a mean of 12 days. After large scale expansion >1x108 ECFCs can be obtained for further tests. Advantageously by using pHPL the contact of human cells with bovine serum antigens can be excluded. By flow cytometry and immunohistochemistry the isolated cells can be characterized as ECFC and their in vitro functionality to form vascular like structures can be tested in a matrigel assay. Further these cells can be subcutaneously injected in a mouse model to form functional, perfused vessels in vivo. After long term expansion and cryopreservation proliferation, function and genomic stability appear to be preserved. 3,4 This animal-protein free isolation and expansion method is easily applicable to generate a large quantity of ECFCs.
Show more [+] Less [-]Cellular encapsulation in 3d hydrogels for tissue engineering Full text
2009
Khetan, Sudhir | Burdick, Jason
The 3D encapsulation of cells within hydrogels represents an increasingly important and popular technique for culturing cells and towards the development of constructs for tissue engineering. This environment better mimics what cells observe in vivo, compared to standard tissue culture, due to the tissue-like properties and 3D environment. Synthetic polymeric hydrogels are water-swollen networks that can be designed to be stable or to degrade through hydrolysis or proteolysis as new tissue is deposited by encapsulated cells. A wide variety of polymers have been explored for these applications, such as poly(ethylene glycol) and hyaluronic acid. Most commonly, the polymer is functionalized with reactive groups such as methacrylates or acrylates capable of undergoing crosslinking through various mechanisms. In the past decade, much progress has been made in engineering these microenvironments - e.g., via the physical or pendant covalent incorporation of biochemical cues - to improve viability and direct cellular phenotype, including the differentiation of encapsulated stem cells (Burdick et al.). The following methods for the 3D encapsulation of cells have been optimized in our and other laboratories to maximize cytocompatibility and minimize the number of hydrogel processing steps. In the following protocols (see Figure 1 for an illustration of the procedure), it is assumed that functionalized polymers capable of undergoing crosslinking are already in hand; excellent reviews of polymer chemistry as applied to the field of tissue engineering may be found elsewhere (Burdick et al.) and these methods are compatible with a range of polymer types. Further, the Michael-type addition (see Lutolf et al.) and light-initiated free radical (see Elisseeff et al.) mechanisms focused on here constitute only a small portion of the reported crosslinking techniques. Mixed mode crosslinking, in which a portion of reactive groups is first consumed by addition crosslinking and followed by a radical mechanism, is another commonly used and powerful paradigm for directing the phenotype of encapsulated cells (Khetan et al., Salinas et al.).
Show more [+] Less [-]Historical view and physiology demonstration at the nmj of the crayfish opener muscle Full text
2009
Cooper, Ann S. | Cooper, Robin L.
Here we present some of the key important discoveries made with the opener neuromuscular (NMJ) preparation of crustaceans and illustrate that there is still much to learn from this model preparation. In understanding the history one can appreciate why even today this NMJ still offers a rich playground to address questions regarding pre- and post-synaptic function and plasticity. The viability and ease of access to the terminal for intracellular as well as extracellular electrophysiology and imaging are significant advantages. The mechanisms behind the modulation of vesicular kinetics and fusion within the high- and low-output terminals are begging for investigation. The preparation also offers a testable model system for computational assessments and manipulations to examine key variables in theoretical models of synaptic function, for example calcium dynamics during short-term facilitation. The synaptic complexity of active zone and statistical nature of quantal release is also an open area for future investigation both experimentally and computationally.
Show more [+] Less [-]