Refine search
Results 1-10 of 932
Study of Endoplasmic Reticulum and Mitochondria Interactions by In Situ Proximity Ligation Assay in Fixed Cells Full text
2016
Tubbs, Emilie | Rieusset, Jennifer | Diabetes Centre ; Skane University Hospital [Lund] | Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM) | NSERM; national research agency [ANR-09-JCJC-0116, ANR-11-BSV1-033-02]; French ministry of higher education and research
Structural interactions between the endoplasmic reticular (ER) and mitochondrial membranes, in domains known as mitochondria-associated membranes (MAM), are crucial hubs for cellular signaling and cell fate. Particularly, these inter-organelle contact sites allow the transfer of calcium from the ER to mitochondria through the voltage-dependent anion channel (VDAC)/glucose-regulated protein 75 (GRP75)/inositol 1,4,5triphosphate receptor (IP3R) calcium channeling complex. While this subcellular compartment is under intense investigation in both physiological and pathological conditions, no simple and sensitive method exists to quantify the endogenous amount of ER-mitochondria contact in cells. Similarly, MAMs are highly dynamic structures, and there is no suitable approach to follow modifications of ER-mitochondria interactions without protein overexpression. Here, we report an optimized protocol based on the use of an in situ proximity ligation assay to visualize and quantify endogenous ER-mitochondria interactions in fixed cells by using the close proximity between proteins of the outer mitochondrial membrane (VDAC1) and of the ER membrane (IP3R1) at the MAM interface. Similar in situ proximity ligation experiments can also be performed with the GRP75/IP3R1 and cyclophilin D/IP3R1 pairs of antibodies. This assay provides several advantages over other imaging procedures, as it is highly specific, sensitive, and suitable to multiple-condition testing. Therefore, the use of this in situ proximity ligation assay should be helpful to better understand the physiological regulations of ER-mitochondria interactions, as well as their role in pathological contexts.
Show more [+] Less [-]Study of Endoplasmic Reticulum and Mitochondria Interactions by In Situ Proximity Ligation Assay in Fixed Cells Full text
2016
Tubbs, Emilie | Rieusset, Jennifer | Diabetes Centre ; Skane University Hospital [Lund] | Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM) | NSERM; national research agency [ANR-09-JCJC-0116, ANR-11-BSV1-033-02]; French ministry of higher education and research
Structural interactions between the endoplasmic reticular (ER) and mitochondrial membranes, in domains known as mitochondria-associated membranes (MAM), are crucial hubs for cellular signaling and cell fate. Particularly, these inter-organelle contact sites allow the transfer of calcium from the ER to mitochondria through the voltage-dependent anion channel (VDAC)/glucose-regulated protein 75 (GRP75)/inositol 1,4,5triphosphate receptor (IP3R) calcium channeling complex. While this subcellular compartment is under intense investigation in both physiological and pathological conditions, no simple and sensitive method exists to quantify the endogenous amount of ER-mitochondria contact in cells. Similarly, MAMs are highly dynamic structures, and there is no suitable approach to follow modifications of ER-mitochondria interactions without protein overexpression. Here, we report an optimized protocol based on the use of an in situ proximity ligation assay to visualize and quantify endogenous ER-mitochondria interactions in fixed cells by using the close proximity between proteins of the outer mitochondrial membrane (VDAC1) and of the ER membrane (IP3R1) at the MAM interface. Similar in situ proximity ligation experiments can also be performed with the GRP75/IP3R1 and cyclophilin D/IP3R1 pairs of antibodies. This assay provides several advantages over other imaging procedures, as it is highly specific, sensitive, and suitable to multiple-condition testing. Therefore, the use of this in situ proximity ligation assay should be helpful to better understand the physiological regulations of ER-mitochondria interactions, as well as their role in pathological contexts.
Show more [+] Less [-]Identification of fatty acids in Bacillus cereus Full text
2016
Ginies, Christian | Brillard, Julien | Nguyen The, Christophe | Sécurité et Qualité des Produits d'Origine Végétale (SQPOV) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI) ; Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
Identification of fatty acids in Bacillus cereus Full text
2016
Ginies, Christian | Brillard, Julien | Nguyen The, Christophe | Sécurité et Qualité des Produits d'Origine Végétale (SQPOV) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Diversité, Génomes & Interactions Microorganismes - Insectes [Montpellier] (DGIMI) ; Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
The Bacillus species contain branched chain and unsaturated fatty acids (FAs) with diverse positions of the methyl branch (iso or anteiso) and of the double bond. Changes in FA composition play a crucial role in the adaptation of bacteria to their environment. These modifications entail a change in the ratio of iso versus anteiso branched FAs, and in the proportion of unsaturated FAs relative to saturated FAs, with double bonds created at specific positions. Precise identification of the FA profile is necessary to understand the adaptation mechanisms of Bacillus species. Many of the FAs from Bacillus are not commercially available. The strategy proposed herein identifies FAs by combining information on the retention time (by calculation of the equivalent chain length (ECL)) with the mass spectra of three types of FA derivatives: fatty acid methyl esters (FAMEs), 4,4-dimethyl oxazoline derivatives (DMOX), and 3-pyridylcarbinyl ester (picolinyl). This method can identify the FAs without the need to purify the unknown FAs. Comparing chromatographic profiles of FAME prepared from Bacillus cereus with a commercial mixture of standards allows for the identification of straight-chain saturated FAs, the calculation of the ECL, and hypotheses on the identity of the other FAs. FAMEs of branched saturated FAs, iso or anteiso, display a constant negative shift in the ECL, compared to linear saturated FAs with the same number of carbons. FAMEs of unsaturated FAs can be detected by the mass of their molecular ions, and result in a positive shift in the ECL compared to the corresponding saturated FAs. The branching position of FAs and the double bond position of unsaturated FAs can be identified by the electron ionization mass spectra of picolinyl and DMOX derivatives, respectively. This approach identifies all the unknown saturated branched FAs, unsaturated straight-chain FAs and unsaturated branched FAs from the B. cereus extract.
Show more [+] Less [-]Identification of fatty acids in Bacillus cereus Full text
2016
Ginies, Christian | Brillard, Julien | Nguyen-The, Christophe
The Bacillus species contain branched chain and unsaturated fatty acids (FAs) with diverse positions of the methyl branch (iso or anteiso) and of the double bond. Changes in FA composition play a crucial role in the adaptation of bacteria to their environment. These modifications entail a change in the ratio of iso versus anteiso branched FAs, and in the proportion of unsaturated FAs relative to saturated FAs, with double bonds created at specific positions. Precise identification of the FA profile is necessary to understand the adaptation mechanisms of Bacillus species. Many of the FAs from Bacillus are not commercially available. The strategy proposed herein identifies FAs by combining information on the retention time (by calculation of the equivalent chain length (ECL)) with the mass spectra of three types of FA derivatives: fatty acid methyl esters (FAMEs), 4,4-dimethyl oxazoline derivatives (DMOX), and 3-pyridylcarbinyl ester (picolinyl). This method can identify the FAs without the need to purify the unknown FAs. Comparing chromatographic profiles of FAME prepared from Bacillus cereus with a commercial mixture of standards allows for the identification of straight-chain saturated FAs, the calculation of the ECL, and hypotheses on the identity of the other FAs. FAMEs of branched saturated FAs, iso or anteiso, display a constant negative shift in the ECL, compared to linear saturated FAs with the same number of carbons. FAMEs of unsaturated FAs can be detected by the mass of their molecular ions, and result in a positive shift in the ECL compared to the corresponding saturated FAs. The branching position of FAs and the double bond position of unsaturated FAs can be identified by the electron ionization mass spectra of picolinyl and DMOX derivatives, respectively. This approach identifies all the unknown saturated branched FAs, unsaturated straight-chain FAs and unsaturated branched FAs from the B. cereus extract.
Show more [+] Less [-]Isolation and culture of adult zebrafish brain-derived neurospheres Full text
2016
Lopez-Ramirez, Miguel A. | Calvo, Charles-Félix | Ristori, Emma | Thomas, Jean-Léon | Nicoli, Stefania
The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish.
Show more [+] Less [-]Sequential application of glass coverslips to assess the compressive stiffness of the mouse lens: strain and morphometric analyses Full text
2016
Cheng, Catherine | Gokhin, David S. | Nowak, Roberta B. | Fowler, Velia M.
The eye lens is a transparent organ that refracts and focuses light to form a clear image on the retina. In humans, ciliary muscles contract to deform the lens, leading to an increase in the lens' optical power to focus on nearby objects, a process known as accommodation. Age-related changes in lens stiffness have been linked to presbyopia, a reduction in the lens' ability to accommodate, and, by extension, the need for reading glasses. Even though mouse lenses do not accommodate or develop presbyopia, mouse models can provide an invaluable genetic tool for understanding lens pathologies, and the accelerated aging observed in mice enables the study of age-related changes in the lens. This protocol demonstrates a simple, precise, and cost-effective method for determining mouse lens stiffness, using glass coverslips to apply sequentially increasing compressive loads onto the lens. Representative data confirm that mouse lenses become stiffer with age, like human lenses. This method is highly reproducible and can potentially be scaled up to mechanically test lenses from larger animals.
Show more [+] Less [-]Methods of soil resampling to monitor changes in the chemical concentrations of forest soils Full text
2016
Lawrence, Gregory B. | Fernandez, Ivan J. | Hazlett, Paul W. | Bailey, Scott W. | Ross, D. S. | Villars, Thomas R. | Quintana Vaccaro, Angélica | Ouimet, Rock | McHale, Michael R. | Johnson, Chris E. | Briggs, Russell D. | Colter, Robert A. | Siemion, Jason | Bartlett, Olivia L. | Vargas, Olga | Antidormi, Michael R. | Koppers, Mary M.
Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.
Show more [+] Less [-]Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish Full text
2016
Sztal, Tamar E. | Ruparelia, Avnika A. | Williams, Caitlin | Bryson-Richardson, Robert J.
Zebrafish muscle development is highly conserved with mammalian systems making them an excellent model to study muscle function and disease. Many myopathies affecting skeletal muscle function can be quickly and easily assessed in zebrafish over the first few days of embryogenesis. By 24 hr post-fertilization (hpf), wildtype zebrafish spontaneously contract their tail muscles and by 48 hpf, zebrafish exhibit controlled swimming behaviors. Reduction in the frequency of, or other alterations in, these movements may indicate a skeletal muscle dysfunction. To analyze swimming behavior and assess muscle performance in early zebrafish development, we utilize both touch-evoked escape response and locomotion assays. Touch-evoked escape response assays can be used to assess muscle performance during short burst movements resulting from contraction of fast-twitch muscle fibers. In response to an external stimulus, which in this case is a tap on the head, wildtype zebrafish at 2 days post-fertilization (dpf) typically exhibit a powerful burst swim, accompanied by sharp turns. Our method quantifies skeletal muscle function by measuring the maximum acceleration during a burst swimming motion, the acceleration being directly proportional to the force produced by muscle contraction. In contrast, locomotion assays during early zebrafish larval development are used to assess muscle performance during sustained periods of muscle activity. Using a tracking system to monitor swimming behavior, we obtain an automated calculation of the frequency of activity and distance in 6-day old zebrafish, reflective of their skeletal muscle function. Measurements of swimming performance are valuable for phenotypic assessment of disease models and high-throughput screening of mutations or chemical treatments affecting skeletal muscle function.
Show more [+] Less [-]Murine flexor tendon injury and repair surgery Full text
2016
Ackerman, Jessica E. | Loiselle, Alayna E.
Tendon connects skeletal muscle and bone, facilitating movement of nearly the entire body. In the hand, flexor tendons (FTs) enable flexion of the fingers and general hand function. Injuries to the FTs are common, and satisfactory healing is often impaired due to excess scar tissue and adhesions between the tendon and surrounding tissue. However, little is known about the molecular and cellular components of FT repair. To that end, a murine model of FT repair that recapitulates many aspects of healing in humans, including impaired range of motion and decreased mechanical properties, has been developed and previously described. Here an in-depth demonstration of this surgical procedure is provided, involving transection and subsequent repair of the flexor digitorum longus (FDL) tendon in the murine hind paw. This technique can be used to conduct lineage analysis of different cell types, assess the effects of gene gain or loss-of-function, and to test the efficacy of pharmacological interventions in the healing process. However, there are two primary limitations to this model: i) the FDL tendon in the mid-portion of the murine hind paw, where the transection and repair occur, is not surrounded by a synovial sheath. Therefore this model does not account for the potential contribution of the sheath to the scar formation process. ii) To protect the integrity of the repair site, the FT is released at the myotendinous junction, decreasing the mechanical forces of the tendon, likely contributing to increased scar formation. Isolation of sufficient cells from the granulation tissue of the FT during the healing process for flow cytometric analysis has proved challenging; cytology centrifugation to concentrate these cells is an alternate method used, and allows for generation of cell preparations on which immunofluorescent labeling can be performed. With this method, quantification of cells or proteins of interest during FT healing becomes possible.
Show more [+] Less [-]Isolation of murine coronary vascular smooth muscle cells Full text
2016
Husarek, Kathryn E. | Zhang, Xiaojin | McCallinhart, Patricia E. | Lucchesi, Pamela A. | Trask, Aaron J.
While the isolation and culture of vascular smooth muscle cells (VSMCs) from large vessels is well established, we sought to isolate and culture VSMCs from the coronary circulation. Hearts with intact aortic arches were removed and perfused via retrograde Langendorff with digestion solution containing 300 Units/ml of collagenase type II, 0.1 mg/ml soybean trypsin inhibitor and 1 M CaCl2. The perfusates were collected at 15 min intervals for 90 min, pelleted by centrifugation, resuspended in plating media, and plated on tissue culture dishes. VSMCs were characterized by presence of SM22α, α-SMA, and vimentin. One of the main advantages of using this technique is the ability to isolate VSMCs from the coronary circulation of mice. Although the small number of cells obtained can limit some of the applications for which the cells can be utilized, isolated coronary VSMCs can be used in a variety of well-established cell culture techniques and assays. Studies investigating VSMCs from genetically modified mice can provide further information about structure-function and signaling processes associated with vascular pathologies.
Show more [+] Less [-]Force and position control in humans - the role of augmented feedback Full text
2016
Lauber, Benedikt | Keller, Martin | Leukel, Christian | Gollhofer, Albert | Taube, Wolfgang
During motor behaviour, humans interact with the environment by for example manipulating objects and this is only possible because sensory feedback is constantly integrated into the central nervous system and these sensory inputs need to be weighted in order meet the task specific goals. Additional feedback presented as augmented feedback was shown to have an impact on motor control and motor learning. A number of studies investigated whether force or position feedback has an influence on motor control and neural activation. However, as in the previous studies the presentation of the force and position feedback was always identical, a recent study assessed whether not only the content but also the interpretation of the feedback has an influence on the time to fatigue of a sustained submaximal contraction and the (inhibitory) activity of the primary motor cortex using subthreshold transcranial magnetic stimulation. This paper describes one possible way to investigate the influence of the interpretation of feedback on motor behaviour by investigating the time to fatigue of submaximal sustained contractions together with the neuromuscular adaptations that can be investigated using surface EMG. Furthermore, the current protocol also describes how motor cortical (inhibitory) activity can be investigated using subthreshold TMS, a method known to act solely on the cortical level. The results show that when participants interpret the feedback as position feedback, they display a significantly shorter time to fatigue of a submaximal sustained contraction. Furthermore, subjects also displayed an increased inhibitory activity of the primary cortex when they believed to receive position feedback compared when they believed to receive force feedback. Accordingly, the results show that interpretation of feedback results in differences on a behavioural level (time to fatigue) that is also reflected in interpretation-specific differences in the amount of inhibitory M1 activity.
Show more [+] Less [-]