Refine search
Results 1-10 of 657
Assessing mineral availability in fish feeds using complementary methods demonstrated with the example of zinc in atlantic salmon Full text
2021
Silva, Marta Sofia | Stewart, Thea | Amlund, Heidi | Sloth, Jens Jørgen | Araujo, Pedro | Lock, Erik Jan Robert | Hogstrand, Christer | Ørnsrud, Robin | Waagbø, Rune | Prabhu, P. Antony Jesu
Assessing mineral availability in fish feeds using complementary methods demonstrated with the example of zinc in atlantic salmon Full text
2021
Silva, Marta Sofia | Stewart, Thea | Amlund, Heidi | Sloth, Jens Jørgen | Araujo, Pedro | Lock, Erik Jan Robert | Hogstrand, Christer | Ørnsrud, Robin | Waagbø, Rune | Prabhu, P. Antony Jesu
Assessing the availability of dietary micro-minerals is a major challenge in mineral nutrition of fish species. The present article aims to describe a systematic approach combining different methodologies to assess the availability of zinc (Zn) in Atlantic salmon (Salmo salar). Considering that several Zn chemical species can be present in an Atlantic salmon feed, it was hypothesised that Zn availability is influenced by the Zn chemical species present in the feed. Thus, in this study, the first protocol is about how to extract the different Zn chemical species from the feed and to analyze them by a size exclusion chromatography-inductively coupled plasma mass spectroscopy (SEC-ICP-MS) method. Subsequently, an in vitro method was developed to evaluate the solubility of dietary Zn in Atlantic salmon feeds. The third protocol describes the method to study the impact of changing Zn chemical species composition on the uptake of Zn in a fish intestinal epithelial model using a rainbow trout gut cell line (RTgutGC). Together, the findings from the in vitro methods were compared with an in vivo study examining the apparent availability of inorganic and organic sources of Zn supplemented to Atlantic salmon feeds. The results showed that several Zn chemical species can be found in feeds and the efficiency of an organic Zn source depends very much on the amino acid ligand used to chelate Zn. The findings of the in vitro methods had less correlation with that outcome of the in vivo study. Nevertheless, in vitro protocols described in this article provided crucial information regarding Zn availability and its assessment in fish feeds. | publishedVersion
Show more [+] Less [-]Assessing mineral availability in fish feeds using complementary methods demonstrated with the example of zinc in atlantic salmon Full text
2021
Silva, Marta Sofia | Stewart, Thea | Amlund, Heidi | Sloth, Jens Jørgen | Araujo, Pedro | Lock, Erik Jan Robert | Hogstrand, Christer | Ørnsrud, Robin | Waagbø, Rune | Prabhu, P. Antony Jesu
Assessing the availability of dietary micro-minerals is a major challenge in mineral nutrition of fish species. The present article aims to describe a systematic approach combining different methodologies to assess the availability of zinc (Zn) in Atlantic salmon (Salmo salar). Considering that several Zn chemical species can be present in an Atlantic salmon feed, it was hypothesised that Zn availability is influenced by the Zn chemical species present in the feed. Thus, in this study, the first protocol is about how to extract the different Zn chemical species from the feed and to analyze them by a size exclusion chromatography-inductively coupled plasma mass spectroscopy (SEC-ICP-MS) method. Subsequently, an in vitro method was developed to evaluate the solubility of dietary Zn in Atlantic salmon feeds. The third protocol describes the method to study the impact of changing Zn chemical species composition on the uptake of Zn in a fish intestinal epithelial model using a rainbow trout gut cell line (RTgutGC). Together, the findings from the in vitro methods were compared with an in vivo study examining the apparent availability of inorganic and organic sources of Zn supplemented to Atlantic salmon feeds. The results showed that several Zn chemical species can be found in feeds and the efficiency of an organic Zn source depends very much on the amino acid ligand used to chelate Zn. The findings of the in vitro methods had less correlation with that outcome of the in vivo study. Nevertheless, in vitro protocols described in this article provided crucial information regarding Zn availability and its assessment in fish feeds. | publishedVersion
Show more [+] Less [-]Mechanical Separation and Protein Solubilization of the Outer and Inner Perivitelline Sublayers from Hen's Eggs Full text
2021
Brégeon, Mégane | Guyot, Nicolas | Réhault-Godbert, Sophie | Biologie des Oiseaux et Aviculture (BOA) ; Université de Tours (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work received a financial support from The French National Research Agency (EQLIPSE, ANR-19-CE21-0006). | ANR-19-CE21-0006,EQLIPSE,Amélioration de la qualité et des défenses antimicrobiennes internes de l'oeuf(2019)
Mechanical Separation and Protein Solubilization of the Outer and Inner Perivitelline Sublayers from Hen's Eggs Full text
2021
Brégeon, Mégane | Guyot, Nicolas | Réhault-Godbert, Sophie | Biologie des Oiseaux et Aviculture (BOA) ; Université de Tours (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work received a financial support from The French National Research Agency (EQLIPSE, ANR-19-CE21-0006). | ANR-19-CE21-0006,EQLIPSE,Amélioration de la qualité et des défenses antimicrobiennes internes de l'oeuf(2019)
International audience | The perivitelline layer that surrounds the egg yolk plays a fundamental role in fertilization, in egg defense, and in the development of the avian embryo. It is formed by two proteinaceous sublayers that are tightly associated and formed by distinct female reproductive organs. Both structures are assumed to have their own functional specificities, which remain to be defined. To characterize the function of proteins composing each sublayer, the first challenge is to establish the conditions that would allow for the mechanical separation of these two intricate layers, while limiting any structural damage. The second step is to optimize the experimental conditions to facilitate protein solubilization from these two sublayers, for subsequent biochemical analyses. The efficiency of this approach is assessed by analyzing the protein profile of each sublayer by Sodium Dodecyl Sulfate-Poly-Acrylamide Gel Electrophoresis (SDS-PAGE), which is expected to be distinct between the two structures. This two-step procedure remains simple; it requires classical biochemical equipment and reagents; and is compatible with further in-depth proteomics. It may also be transposed to other avian eggs for comparative biology, knowing that the structure and the composition of the perivitelline layer has been shown to have species-specific features. In addition, the non-denaturing conditions developed for sublayers separation (step 1) allow their structural analyses by scanning and transmission electron microscopy. It may also constitute the initial step for subsequent protein purification to analyze their respective biological activities and 3D structure, or to perform further immunohistochemical or functional analyses. Such studies would help to decipher the physiological function of these two sublayers, whose structural and functional integrities are determinant criteria of the reproductive success.
Show more [+] Less [-]Mechanical separation and protein solubilization of the outer and inner perivitelline sublayers from hen's eggs Full text
2021
Bregeon, Mégane | Guyot, Nicolas | Réhault-Godbert, Sophie
The perivitelline layer that surrounds the egg yolk plays a fundamental role in fertilization, in egg defense, and in the development of the avian embryo. It is formed by two proteinaceous sublayers that are tightly associated and formed by distinct female reproductive organs. Both structures are assumed to have their own functional specificities, which remain to be defined. To characterize the function of proteins composing each sublayer, the first challenge is to establish the conditions that would allow for the mechanical separation of these two intricate layers, while limiting any structural damage. The second step is to optimize the experimental conditions to facilitate protein solubilization from these two sublayers, for subsequent biochemical analyses. The efficiency of this approach is assessed by analyzing the protein profile of each sublayer by Sodium Dodecyl Sulfate-Poly-Acrylamide Gel Electrophoresis (SDS-PAGE), which is expected to be distinct between the two structures. This two-step procedure remains simple; it requires classical biochemical equipment and reagents; and is compatible with further in-depth proteomics. It may also be transposed to other avian eggs for comparative biology, knowing that the structure and the composition of the perivitelline layer has been shown to have species-specific features. In addition, the non-denaturing conditions developed for sublayers separation (step 1) allow their structural analyses by scanning and transmission electron microscopy. It may also constitute the initial step for subsequent protein purification to analyze their respective biological activities and 3D structure, or to perform further immunohistochemical or functional analyses. Such studies would help to decipher the physiological function of these two sublayers, whose structural and functional integrities are determinant criteria of the reproductive success.
Show more [+] Less [-]Analysis of SEC-SAXS data via EFA deconvolution and Scatter Full text
2021
Tully, Mark | Tarbouriech, Nicolas | Rambo, Robert | Hutin, Stephanie | European Synchrotron Radiation Facility [Grenoble] (ESRF) | Institut de biologie structurale (IBS - UMR 5075) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA) | DIAMOND Light source | StructDev (StructDev) ; Physiologie cellulaire et végétale (LPCV) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA) | Physiologie cellulaire et végétale (LPCV) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA) | Grants from the Service de Santé des Armées and the Délégation Générale pour l'Armement | ANR-13-BSV8-0014,REPLIPOX,Elucidation structurale et fonctionnelle du processus de réplication génomique des poxvirus(2013) | ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010) | ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
Analysis of SEC-SAXS data via EFA deconvolution and Scatter Full text
2021
Tully, Mark | Tarbouriech, Nicolas | Rambo, Robert | Hutin, Stephanie | European Synchrotron Radiation Facility [Grenoble] (ESRF) | Institut de biologie structurale (IBS - UMR 5075) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA) | DIAMOND Light source | StructDev (StructDev) ; Physiologie cellulaire et végétale (LPCV) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA) | Physiologie cellulaire et végétale (LPCV) ; Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) ; Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA) | Grants from the Service de Santé des Armées and the Délégation Générale pour l'Armement | ANR-13-BSV8-0014,REPLIPOX,Elucidation structurale et fonctionnelle du processus de réplication génomique des poxvirus(2013) | ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010) | ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
International audience | BioSAXS is a popular technique used in molecular and structural biology to determine the solution structure, particle size and shape, surface-to-volume ratio and conformational changes of macromolecules and macromolecular complexes. A high quality SAXS dataset for structural modeling must be from monodisperse, homogeneous samples and this is often only reached by a combination of inline chromatography and immediate SAXS measurement. Most commonly, size-exclusion chromatography is used to separate samples and exclude contaminants and aggregations from the particle of interest allowing SAXS measurements to be made from a well-resolved chromatographic peak of a single protein species. Still, in some cases, even inline purification is not a guarantee of monodisperse samples, either because multiple components are too close to each other in size or changes in shape induced through binding alter perceived elution time. In these cases, it may be possible to deconvolute the SAXS data of a mixture to obtain the idealized SAXS curves of individual components. Here, we show how this is achieved and the practical analysis of SEC-SAXS data is performed on ideal and difficult samples. Specifically, we show the SEC-SAXS analysis of the vaccinia E9 DNA polymerase exonuclease minus mutant.
Show more [+] Less [-]Analysis of sec-saxs data via efa deconvolution and scatter Full text
2021
Tully, Mark D | Tarbouriech, Nicolas | Rambo, Robert P | Hutin, Stephanie
BioSAXS is a popular technique used in molecular and structural biology to determine the solution structure, particle size and shape, surface-to-volume ratio and conformational changes of macromolecules and macromolecular complexes. A high quality SAXS dataset for structural modeling must be from monodisperse, homogeneous samples and this is often only reached by a combination of inline chromatography and immediate SAXS measurement. Most commonly, size-exclusion chromatography is used to separate samples and exclude contaminants and aggregations from the particle of interest allowing SAXS measurements to be made from a well-resolved chromatographic peak of a single protein species. Still, in some cases, even inline purification is not a guarantee of monodisperse samples, either because multiple components are too close to each other in size or changes in shape induced through binding alter perceived elution time. In these cases, it may be possible to deconvolute the SAXS data of a mixture to obtain the idealized SAXS curves of individual components. Here, we show how this is achieved and the practical analysis of SEC-SAXS data is performed on ideal and difficult samples. Specifically, we show the SEC-SAXS analysis of the vaccinia E9 DNA polymerase exonuclease minus mutant.
Show more [+] Less [-]Automation of Bio-Atomic Force Microscope Measurements on Hundreds of C. albicans Cells Full text
2021
Séverac, Childérick | Proa-Coronado, Sergio | Martinez-Rivas, Adrian | Formosa-Dague, Cécile | Dague, Etienne | Institut des Technologies Avancées en sciences du Vivant (ITAV) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) | Instituto Politecnico Nacional [Mexico] (IPN) | Transfert, Interface, Mélanges (TBI-TIM) ; Toulouse Biotechnology Institute (TBI) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Équipe Ingénierie pour les sciences du vivant (LAAS-ELIA) ; Laboratoire d'analyse et d'architecture des systèmes (LAAS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT) | ANR-20-CE42-0017,AutoBioTip,Automatisation des mesures mécanobiologiques par AFM, et de leur analyse par Apprentissage automatique(2020)
International audience | The method presented in this paper aims to automate Bio-AFM experiments and the recording of force curves. Using this method, it is possible to record forces curves on 1000 cells in 4 hours automatically. To maintain a 4 hour analysis time, the number of force curves per cell is reduced to 9 or 16. The method combines a Jython based program and a strategy for assembling cells on defined patterns. The program, implemented on a commercial Bio-AFM, can center the tip on the first cell of the array and then move, automatically, from cell to cell while recording force curves on each cell. Using this methodology, it is possible to access the biophysical parameters of the cells such as their rigidity, their adhesive properties, etc. With the automation and the large number of cells analyzed, one can access the behavior of the cell population. This is a breakthrough in the Bio-AFM field where data have, so far, been recorded on only a few tens of cells.
Show more [+] Less [-]Intranasal immunization and milk collection in studies of maternal immunization in new zealand white rabbits (Oryctolagus cuniculus) Full text
2021
Landon, Chelsea D. | Dancourt, Gabriella | Shing, Vivian | Staats, Herman F.
Due to similarities in placentation and antibody transfer with humans, rabbits are an excellent model of maternal immunization. Additional advantages of this research model are the ease of breeding and sample collection, relatively short gestation period, and large litter sizes. Commonly assessed routes of immunization include subcutaneous, intramuscular, intranasal, and intradermal. Nonterminal sample collection for the chronological detection of the immunologic responses to these immunizations include the collection of blood, from both dams and kits, and milk from the lactating does. In this article, we will demonstrate techniques our lab has utilized in studies of maternal immunization in New Zealand White rabbits (Oryctolagus cuniculus), including intranasal immunization and milk collection.
Show more [+] Less [-]Use of 3d robotic ultrasound for In Vivo analysis of mouse kidneys Full text
2021
Holmes, Heather L. | Stiller, Alison A. | Moore, Christopher J. | Gregory, Adriana V. | Roos, Carolyn M. | Miller, Jordan D. | Gessner, Ryan C. | Czernuszewicz, Tomasz J. | Kline, Timothy L. | Romero, Michael F.
Common modalities for in vivo imaging of rodents include positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). Each method has limitations and advantages, including availability, ease of use, cost, size, and the use of ionizing radiation or magnetic fields. This protocol describes the use of 3D robotic US for in vivo imaging of rodent kidneys and heart, subsequent data analysis, and possible research applications. Practical applications of robotic US are the quantification of total kidney volume (TKV), as well as the measurement of cysts, tumors, and vasculature. Although the resolution is not as high as other modalities, robotic US allows for more practical high throughput data collection. Furthermore, using US M-mode imaging, cardiac function may be quantified. Since the kidneys receive 20%-25% of the cardiac output, assessing cardiac function is critical to the understanding of kidney physiology and pathophysiology.
Show more [+] Less [-]Incremental temperature changes for maximal breeding and spawning in Astyanax mexicanus Full text
2021
Ma, Li | Dessiatoun, Ruby | Shi, Janet | Jeffery, William R.
The Mexican tetra, Astyanax mexicanus, is an emerging model system for studies in development and evolution. The existence of eyed surface (surface fish) and blind cave (cave fish) morphs in this species presents an opportunity to interrogate the mechanisms underlying morphological and behavioral evolution. Cave fish have evolved novel constructive and regressive traits. The constructive changes include increases in taste buds and jaws, lateral line sensory organs, and body fat. The regressive changes include loss or reduction of eyes. melanin pigmentation, schooling behavior, aggression, and sleep. To experimentally interrogate these changes, it is crucial to obtain large numbers of spawned embryos. Since the original A. mexicanus surface fish and cave fish were collected in Texas and Mexico in the 1990s, their descendants have been routinely stimulated to breed and spawn large numbers of embryos bimonthly in the Jeffery laboratory. Although breeding is controlled by food abundance and quality, light-dark cycles, and temperature, we have found that incremental temperature changes play a key role in stimulating maximal spawning. The gradual increase of temperature from 72 °F to 78 °F in the first three days of a breeding week provides two-three consecutive spawning days with maximal numbers of high-quality embryos, which is then followed by a gradual decrease of temperature from 78 °F to 72 °F during the last three days of the spawning week. The procedures shown in this video outline the workflow before and during a laboratory breeding week for incremental temperature stimulated spawning.
Show more [+] Less [-]Production of membrane-filtered phase-shift decafluorobutane nanodroplets from preformed microbubbles Full text
2021
Merillat, Darrah A. | Honari, Arvin | Sirsi, Shashank R.
There are many methods that can be used for the production of vaporizable phase-shift droplets for imaging and therapy. Each method utilizes different techniques and varies in price, materials, and purpose. Many of these fabrication methods result in polydisperse populations with non-uniform activation thresholds. Additionally, controlling the droplet sizes typically requires stable perfluorocarbon liquids with high activation thresholds that are not practical in vivo. Producing uniform droplet sizes using low-boiling point gases would be beneficial for in vivo imaging and therapy experiments. This article describes a simple and economical method for the formation of size-filtered lipid-stabilized phase-shift nanodroplets with low-boiling point decafluorobutane (DFB). A common method of generating lipid microbubbles is described, in addition to a novel method of condensing them with high-pressure extrusion in a single step. This method is designed to save time, maximize efficiency, and generate larger volumes of microbubble and nanodroplet solutions for a wide variety of applications using common laboratory equipment found in many biological laboratories.
Show more [+] Less [-]A rat model of ecohiv brain infection Full text
2021
Li, Hailong | McLaurin, Kristen A. | Mactutus, Charles F. | Booze, Rosemarie M.
It has been well studied that the EcoHIV infected mouse model is of significant utility in investigating HIV associated neurological complications. Establishment of the EcoHIV infected rat model for studies of drug abuse and neurocognitive disorders, would be beneficial in the study of neuroHIV and HIV-1 associated neurocognitive disorders (HAND). In the present study, we demonstrate the successful creation of a rat model of active HIV infection using chimeric HIV (EcoHIV). First, the lentiviral construct of EcoHIV was packaged in cultured 293 FT cells for 48 hours. Then, the conditional medium was concentrated and titered. Next, we performed bilateral stereotaxic injections of the EcoHIV-EGFP into F344/N rat brain tissue. One week after infection, EGFP fluorescence signals were detected in the infected brain tissue, indicating that EcoHIV successfully induces an active HIV infection in rats. In addition, immunostaining for the microglial cell marker, Iba1, was performed. The results indicated that microglia were the predominant cell type harboring EcoHIV. Furthermore, EcoHIV rats exhibited alterations in temporal processing, a potential underlying neurobehavioral mechanism of HAND as well as synaptic dysfunction eight weeks after infection. Collectively, the present study extends the EcoHIV model of HIV-1 infection to the rat offering a valuable biological system to study HIV-1 viral reservoirs in the brain as well as HAND and associated comorbidities such as drug abuse.
Show more [+] Less [-]