Refine search
Results 1-10 of 309
Cell-Free protein synthesis from exonuclease-deficient cellular extracts utilizing linear DNA templates Full text
2022
Sabeti Azad, Mahnaz | Cardoso Batista, Angelo | Faulon, Jean-Loup | Beisel, Chase, L | Bonnet, Jérôme | Kushwaha, Manish | MICrobiologie de l'ALImentation au Service de la Santé (MICALIS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Helmholtz Centre for Infection Research (HZI) | University Hospital of Würzburg | Centre de Biologie Structurale [Montpellier] (CBS) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | ANR-17-CE07-0046,SINAPUV,(Bio)synthèse et étude des propriétés physico-chimiques et biologiques d'analogues du malate de sinapoyl: de nouvelles molécules anti-UV non-toxiques et biosourcées pour l'industrie cosmétique(2017) | ANR-18-CE33-0015,VR-MARS,Réalité Virtuelle, Assistance et Secours Médical pour Spationautes(2018) | ANR-21-CE48-0003,DREAMY,Algorithmes distribués pour les systèmes microbiologiques(2021)
International audience | Cell-free protein synthesis (CFPS) has recently become very popular in the field of synthetic biology due to its numerous advantages. Using linear DNA templates for CFPS will further enable the technology to reach its full potential, decreasing the experimental time by eliminating the steps of cloning, transformation, and plasmid extraction. Linear DNA can be rapidly and easily amplified by PCR to obtain high concentrations of the template, avoiding potential in vivo expression toxicity. However, linear DNA templates are rapidly degraded by exonucleases that are naturally present in the cell extracts. There are several strategies that have been proposed to tackle this problem, such as adding nuclease inhibitors or chemical modification of linear DNA ends for protection. All these strategies cost extra time and resources and are yet to obtain near-plasmid levels of protein expression. A detailed protocol for an alternative strategy is presented here for using linear DNA templates for CFPS. By using cell extracts from exonuclease-deficient knockout cells, linear DNA templates remain intact without requiring any end-modifications. We present the preparation steps of cell lysate from Escherichia coli BL21 Rosetta2 ΔrecBCD strain by sonication lysis and buffer calibration for Mg-glutamate (Mg-glu) and K-glutamate (K-glu) specifically for linear DNA. This method is able to achieve protein expression levels comparable to that from plasmid DNA in E. coli CFPS.
Show more [+] Less [-]Mycobacterium tuberculosis extracellular vesicle enrichment through size exclusion chromatography Full text
2022
Ryan, Joan M. | Dobos, Karen M. | Kruh-Garcia, Nicole A.
The role of extracellular vesicles (EVs) in the context of bacterial infection has emerged as a new avenue for understanding microbial physiology. Specifically, Mycobacterium tuberculosis (Mtb) EVs play a role in the host-pathogen interaction and response to environmental stress. Mtb EVs are also highly antigenic and show potential as vaccine components. The most common method for purifying Mtb EVs is density gradient ultracentrifugation. This process has several limitations, including low throughput, low yield, reliance on expensive equipment, technical challenges, and it can negatively impact the resulting preparation. Size exclusion chromatography (SEC) is a gentler alternative method that combats many of the limitations of ultracentrifugation. This protocol demonstrates that SEC is effective for Mtb EV enrichment and produces high-quality Mtb EV preparations of increased yield in a rapid and scalable manner. Additionally, a comparison to density gradient ultracentrifugation by quantification and qualification procedures demonstrates the benefits of SEC. While the evaluation of EV quantity (nanoparticle tracking analysis), phenotype (transmission electron microscopy), and content (Western blotting) is tailored to Mtb EVs, the workflow provided can be applied to other mycobacteria.
Show more [+] Less [-]Demonstrating hairy and glabrous skin innervation in a 3d pattern using multiple fluorescent staining and tissue clearing approaches Full text
2022
Wang, Xiaoyu | Cao, Wanying | Shi, Jingtao | Zhang, Xiaoning | Qu, Zhengyang | Xu, Dongsheng | Wan, Hongye | Su, Yangshuai | He, Wei | Jing, Xianghong | Bai, Wanzhu
Skin innervation is an important part of the peripheral nervous system. Although the study of the cutaneous nerve fibers has progressed rapidly, most of the understanding of their distributional and chemical characteristics comes from conventional histochemical and immunohistochemical staining on thin tissue sections. With the development of the tissue clearing technique, it has become possible to view the cutaneous nerve fibers on thicker tissue sections. The present protocol describes multiple fluorescent staining on tissue sections at a thickness of 300 µm from the plantar and dorsal skin of rat hindfoot, the two typical hairy and glabrous skin sites. Here, the calcitonin gene-related peptide labels the sensory nerve fibers, while phalloidin and lymphatic vessel endothelial hyaluronan receptor 1 label the blood and lymphatic vessels, respectively. Under a confocal microscope, the labeled sensory nerve fibers were followed completely at a longer distance, running in bundles in the deep cutaneous layer and freestyle in the superficial layer. These nerve fibers ran in parallel to or surrounded the blood vessels, and lymphatic vessels formed a three-dimensional (3D) network in the hairy and glabrous skin. The current protocol provides a more effective approach to studying skin innervation than the existing conventional methods from the methodology perspective.
Show more [+] Less [-]Conformable wearable electrodes: from fabrication to electrophysiological assessment Full text
2022
Galliani, Marina | Ferrari, Laura M. | Ismailova, Esma
Wearable electronic devices are becoming key players in monitoring the body signals predominantly altered during physical activity tracking. Considering the growing interest in telemedicine and personalized care driven by the rise of the Internet of Things era, wearable sensors have expanded their field of application into healthcare. To ensure the collection of clinically relevant data, these devices need to establish conformable interfaces with the human body to provide high-signal-quality recordings and long-term operation. To this end, this paper presents a method to easily fabricate conformable thin tattoo- and soft textile-based sensors for their application as wearable organic electronic devices in a broad spectrum of surface electrophysiological recordings. The sensors are developed through a cost-effective and scalable process of cutaneous electrode patterning using poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), the most popular conductive polymer in bioelectronics, on off-the-shelf, wearable substrates. This paper presents key steps in electrode characterization through impedance spectroscopy to investigate their performance in signal transduction when coupled with the skin. Comparative studies are required to position the performance of novel sensors with respect to the clinical gold standard. To validate the fabricated sensors' performance, this protocol shows how to perform various biosignal recordings from different configurations through a user-friendly and portable electronic setup in a laboratory environment. This methods paper will allow multiple experimental initiatives to advance the current state of the art in wearable sensors for human body health monitoring.
Show more [+] Less [-]Transcatheter pulmonary valve replacement from autologous pericardium with a self-expandable nitinol stent in an adult sheep model Full text
2022
Hao, Yimeng | Sun, Xiaolin | Kiekenap, Jonathan Frederik Sebastian | Emeis, Jasper | Steitz, Marvin | Breitenstein-Attach, Alexander | Berger, Felix | Schmitt, Boris
Transcatheter pulmonary valve replacement has been established as a viable alternative approach for patients suffering from right ventricular outflow tract or bioprosthetic valve dysfunction, with excellent early and late clinical outcomes. However, clinical challenges such as stented heart valve deterioration, coronary occlusion, endocarditis, and other complications must be addressed for lifetime application, particularly in pediatric patients. To facilitate the development of a lifelong solution for patients, transcatheter autologous pulmonary valve replacement was performed in an adult sheep model. The autologous pericardium was harvested from the sheep via left anterolateral minithoracotomy under general anesthesia with ventilation. The pericardium was placed on a 3D shaping heart valve model for non-toxic cross-linking for 2 days and 21 h. Intracardiac echocardiography (ICE) and angiography were performed to assess the position, morphology, function, and dimensions of the native pulmonary valve (NPV). After trimming, the crosslinked pericardium was sewn onto a self-expandable Nitinol stent and crimped into a self-designed delivery system. The autologous pulmonary valve (APV) was implanted at the NPV position via left jugular vein catheterization. ICE and angiography were repeated to evaluate the position, morphology, function, and dimensions of the APV. An APV was successfully implanted in sheep J. In this paper, sheep J was selected to obtain representative results. A 30 mm APV with a Nitinol stent was accurately implanted at the NPV position without any significant hemodynamic change. There was no paravalvular leak, no new pulmonary valve insufficiency, or stented pulmonary valve migration. This study demonstrated the feasibility and safety, in a long-time follow-up, of developing an APV for implantation at the NPV position with a self-expandable Nitinol stent via jugular vein catheterization in an adult sheep model.
Show more [+] Less [-]Manual blot-and-plunge freezing of biological specimens for single-particle cryogenic electron microscopy Full text
2022
Nguyen, Hoang P. M. | McGuire, Kelly L. | Cook, Brian D. | Herzik, Jr., Mark A.
Imaging biological specimens with electrons for high-resolution structure determination by single-particle cryogenic electron microscopy (cryoEM) requires a thin layer of vitreous ice containing the biomolecules of interest. Despite numerous technological advances in recent years that have propelled single-particle cryoEM to the forefront of structural biology, the methods by which specimens are vitrified for high-resolution imaging often remain the rate-limiting step. Although numerous recent efforts have provided means to overcome hurdles frequently encountered during specimen vitrification, including the development of novel sample supports and innovative vitrification instrumentation, the traditional manually operated plunger remains a staple in the cryoEM community due to the low cost to purchase and ease of operation. Here, we provide detailed methods for using a standard, guillotine-style manually operated blot-and-plunge device for the vitrification of biological specimens for high-resolution imaging by single-particle cryoEM. Additionally, commonly encountered issues and troubleshooting recommendations for when a standard preparation fails to yield a suitable specimen are also described.
Show more [+] Less [-]Three-dimensional characterization of interorganelle contact sites in hepatocytes using serial section electron microscopy Full text
2022
Chun Chung, Gary Hong | Gissen, Paul | Stefan, Christopher J. | Burden, Jemima J.
Transmission electron microscopy has been long considered to be the gold standard for the visualization of cellular ultrastructure. However, analysis is often limited to two dimensions, hampering the ability to fully describe the three-dimensional (3D) ultrastructure and functional relationship between organelles. Volume electron microscopy (vEM) describes a collection of techniques that enable the interrogation of cellular ultrastructure in 3D at mesoscale, microscale, and nanoscale resolutions. This protocol provides an accessible and robust method to acquire vEM data using serial section transmission EM (TEM) and covers the technical aspects of sample processing through to digital 3D reconstruction in a single, straightforward workflow. To demonstrate the usefulness of this technique, the 3D ultrastructural relationship between the endoplasmic reticulum and mitochondria and their contact sites in liver hepatocytes is presented. Interorganelle contacts serve vital roles in the transfer of ions, lipids, nutrients, and other small molecules between organelles. However, despite their initial discovery in hepatocytes, there is still much to learn about their physical features, dynamics, and functions. Interorganelle contacts can display a range of morphologies, varying in the proximity of the two organelles to one another (typically ~10-30 nm) and the extent of the contact site (from punctate contacts to larger 3D cisternal-like contacts). The examination of close contacts requires high-resolution imaging, and serial section TEM is well suited to visualize the 3D ultrastructural of interorganelle contacts during hepatocyte differentiation, as well as alterations in hepatocyte architecture associated with metabolic diseases.
Show more [+] Less [-]Nitroreductase/metronidazole-mediated ablation and a matlab platform (rpegen) for studying regeneration of the zebrafish retinal pigment epithelium Full text
2022
Leach, Lyndsay L. | Fisher, G Burch | Gross, Jeffrey M.
The retinal pigment epithelium (RPE) resides at the back of the eye and performs functions essential for maintaining the health and integrity of adjacent retinal and vascular tissues. At present, the limited reparative capacity of mammalian RPE, which is restricted to small injuries, has hindered progress to understanding in vivo RPE regenerative processes. Here, a detailed methodology is provided to facilitate the study of in vivo RPE repair utilizing the zebrafish, a vertebrate model capable of robust tissue regeneration. This protocol describes a transgenic nitroreductase/metronidazole (NTR/MTZ)-mediated injury paradigm (rpe65a:nfsB-eGFP), which results in ablation of the central two-thirds of the RPE after 24 h treatment with MTZ, with subsequent tissue recovery. Focus is placed on RPE ablations in larval zebrafish and methods for testing the effects of pharmacological compounds on RPE regeneration are also outlined. Generation and validation of RpEGEN, a MATLAB script created to automate quantification of RPE regeneration based on pigmentation, is also discussed. Beyond active RPE repair mechanisms, this protocol can be expanded to studies of RPE degeneration and injury responses as well as the effects of RPE damage on adjacent retinal and vascular tissues, among other cellular and molecular processes. This zebrafish system holds significant promise in identifying genes, networks, and processes that drive RPE regeneration and RPE disease-related mechanisms, with the long-term goal of applying this knowledge to mammalian systems and, ultimately, toward therapeutic development.
Show more [+] Less [-]Molecular and immunologic techniques in a genetically engineered mouse model of gastrointestinal stromal tumor Full text
2022
Tieniber, Andrew D. | Hanna, Andrew N. | Do, Kevin | Wang, Laura Y. | Rossi, Ferdinando | DeMatteo, Ronald P.
Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and is typically driven by a single mutation in the KIT receptor. Across tumor types, numerous mouse models have been developed in order to investigate the next generation of cancer therapies. However, in GIST, most in vivo studies use xenograft mouse models which have inherent limitations. Here, we describe an immunocompetent, genetically engineered mouse model of gastrointestinal stromal tumor harboring a KitV558Δ/+ mutation. In this model, mutant KIT, the oncogene responsible for most GISTs, is driven by its endogenous promoter leading to a GIST which mimics the histological appearance and immune infiltrate seen in human GISTs. Furthermore, this model has been used successfully to investigate both targeted molecular and immune therapies. Here, we describe the breeding and maintenance of a KitV558Δ/+ mouse colony. Additionally, this paper details the treatment and procurement of GIST, draining mesenteric lymph node, and adjacent cecum in KitV558Δ/+ mice, as well as sample preparation for molecular and immunologic analyses.
Show more [+] Less [-]Determination of glucan chain length distribution of glycogen using the fluorophore-assisted carbohydrate electrophoresis (face) method Full text
2022
Fermont, Léa | Szydlowski, Nicolas | Colleoni, Christophe
Glycogen particles are branched polysaccharides composed of linear chains of glucosyl units linked by α-1,4 glucoside bonds. The latter are attached to each other by α-1,6 glucoside linkages, referred to as branch points. Among the different forms of carbon storage (i.e., starch, β-glucan), glycogen is probably one of the oldest and most successful storage polysaccharides found across the living world. Glucan chains are organized so that a large amount of glucose can quickly be stored or fueled in a cell when needed. Numerous complementary techniques have been developed over the last decades to solve the fine structure of glycogen particles. This article describes Fluorophore-Assisted Carbohydrate Electrophoresis (FACE). This method quantifies the population of glucan chains that compose a glycogen particle. Also known as chain length distribution (CLD), this parameter mirrors the particle size and the percentage of branching. It is also an essential requirement for the mathematical modeling of glycogen biosynthesis.
Show more [+] Less [-]