Refine search
Results 101-110 of 436
Removal of Brilliant Green Dye from Aqueous Solutions Using Multi-walled Carbon Nanotubes (MWCNTs): Linear and Nonlinear Isotherm Models and Error Analysis Full text
2023
Mahdi, N. I. | Falih, M.S. | Abbas, R. F. | Waheb, A. A. | Rahi, A. A.
Current research explains the comparison of linear and nonlinear regression methods for finding the optimal isotherm study using experimental data for the adsorption of BG on multi-walled carbon nanotubes MWCNTs. BG dye maximum adsorption onto MWCNTs occurred at pH 2 and 35°C, with the apparent equilibrium reached after 15 min. In this study, five error functions were used: ERRS, Hybrid, Chi-square (χ2), ARE, and EABS. The values of error functions suggest that the Langmuir Linear type 3 is a suitable isotherm to describe the adsorption of BG on MWCNTs. The results showed that the Langmuir isotherm is a fit good isotherm to describe the adsorption process. The coefficient of non-determination (K2) showed Hybrid, and ERRS were the preferable error functions used to predict the fit of linear and nonlinear isotherm models. Compared with other studies, MWCNTs can be used as a low-cost adsorbent with low contact time for the removal of BG dye from an aqueous solution.
Show more [+] Less [-]Studies on the Contamination of Heavy Metals and Their Chemical Speciation in Sediment from Selected Locations of Pune District Full text
2023
Hassanpourfard, Parveen | Mane, Ashish Vilas | Banerjee, Kaushik
The heavy metal speciation analysis in sediments helps us understand and evaluate essential and unavoidable issues in terms of both health and environmental hazards imposed by these metals in our lives. Analyzing the total content of heavy metals enables us to understand only the quantity of the contaminants. To understand the different species or the chemical forms of heavy metals available in the sediments, we must study their speciation. Speciation studies help us determine their possible sources as well as their environmental stability in terms of availability to plants and other organisms. The heavy metals in this study were specified using four-stage sequential extraction, also known as the BCR technique. This study mainly highlights the quantification of metal contamination of Cu, Zn, Pb, Ni, Cd & Cr, and chemical forms as species in sediment samples collected from different Pune District, Maharashtra sites. Heavy metal contamination from the collected samples was analyzed with the use of flame atomic absorption spectrometry. This study indicated that Zn and Ni are among the most abundant metals in the sediment samples; however, Cu and Cd belong to the least abundant category. The oxidizable and residual forms (immobile and cannot be used by the organisms readily) appeared dominant for most heavy metals. Very significant differences were observed in the speciation of heavy metals from sample to sample, which was probably due to differences in water/soil composition and the agrochemicals like pesticides, weedicides, and fertilizers used in agricultural practices; the wastewater generated from different pharmaceuticals, chemical processing and manufacturing industries as well as the improper wastewater treatment methods.
Show more [+] Less [-]Biodiesel from Dunaliella salina Microalgae Using Base Catalyzed Transesterification – An Assessment through GC/MS, FTIR and NMR Studies Full text
2023
Hariram, V. | Janarthanan, M. | Paul, R. Christu | Sivasankar, A. | Akram, M. Wasim | Sangeethkumar, E. | Ramanathan, V. | Khan, P. Sajid | Reddy, S. Manikanta
Algal biofuels are a promising renewable feedstock to produce energy that can supplement future energy demands greatly. The present study aims to utilize Dunaliella salina, a hypersaline, unicellular greenish-orange micro-algae, to produce bio-oil. F/2 nutrient media and trace metal and vitamin solution under carbon-dioxide-rich conditions were used to cultivate the microalgae. Ultrasonic extraction method at 60 Hz for 90 min isolated 650 mL of bio-oil. A single-stage based-catalyzed transesterification process with methanol and sodium hydroxide yielded 380 mL of Pure Dunaliella salina biodiesel at % an extraction efficiency of 87%. The Phytochemical screening on the cultivated Dunaliella sp. was performed to understand its feasibility to be used as a fuel for IC engines. Furthermore, the obtained biodiesel was characterized using Fourier Transform Infrared Spectrometer (FTIR), Gas Chromatography Mass Spectrometer (GCMS), and Nuclear Magnetic Resonance (NMR) spectral analysis.
Show more [+] Less [-]Decarbonization of the Building Sector in Morocco – A Systematic Review Full text
2023
Majaty, S. El | Touzani, A. | Kasseh, Y.
This article is a systematic review of the decarbonization of the building sector in Morocco. It explores the different approaches and technologies used to reduce greenhouse gas emissions and achieve decarbonization targets in this sector. The article examines the policies and regulations in place in Morocco to encourage decarbonization of the building sector, as well as the initiatives taken by key actors to reduce carbon emissions in their buildings. It also reviews sustainable building technologies and renewable energy systems currently used in the country. The systematic review concludes that while Morocco has put in place policies and regulations to encourage the decarbonization of the building sector, there is still much to be done to achieve the ambitious decarbonization targets set by the country. The authors of the article recommend greater investment in sustainable building technologies and renewable energies, as well as increased collaboration between public and private sector actors to accelerate the transition to low-carbon buildings.
Show more [+] Less [-]Defluoridation of Water by Biowaste Material – A Study of Adsorption Kinetics and Isotherms Full text
2023
Kumar, K. Kiran | Nadh, Ratnakaram Venkata | Rao, Kaza Somasekhara | Krishnaveni, G.
Human beings experience adversative effects due to the large fluoride concentrations present in potable water. Because of the low cost and simple operation, the extensively acknowledged process is adsorption. The objective of this study is to investigate the performance of some of the prepared carbons from bio-waste materials viz., Citrus limon, Citrus nobilis, Pithecellobium dulce, and Bombax malabaricum sheaths in defluoridation. Initial concentration, particle size, agitation time, adsorbent dose, and pH were the different parameters chosen to study their effect on adsorption. Studied the adsorption kinetics. Further suitability to adsorption isotherms was reviewed.
Show more [+] Less [-]Influence of Yeast Bioinoculant Isolated from Indian Date Palm Tree (Phoenix sylvestris) Sap on the Health of Wheat Crop and Soil Full text
2023
Ambawade, M. S. | Manghwani, N. V. | Madhyani, P. R. | Shaikh, A. M. | Patil, D. D. | Pathade, G. R.
In this study, three promising yeast isolates were isolated from the sap of the Indian date palm tree (Phoenix sylvestris) and characterized by biochemical tests and 18S rRNA gene sequencing. They were confirmed as Saccharomyces cerevisiae and were designated as strains PYS-1, PYS-2, and PYS-3. These confirmed strains were used for the preparation of bioinoculants. Bioinoculant was prepared and applied to wheat crops, and the effect of Bioinoculant. Statistical analysis is carried out using analysis of variance (ANOVA), and it is found that the absorbance of chlorophyll, protein, and Indole Acetic Acid (IAA) content is significantly increased. The treatment of bioinoculant showed that crops significantly increased chlorophyll, protein, and IAA content. Further, we applied bioinoculant on the soil and measured the soil’s humus content before and after the treatment of bioinoculant. Then, a paired t-test was applied to check the effectiveness of the treatment, and it was found to significantly increase humus content in the soil. The use of bioinoculants is an economically feasible and eco-friendly method.
Show more [+] Less [-]Reducing the Carbon Footprint of Clinical Trials: Implementing Sustainable Practices in Clinical Research Full text
2023
Nidhi, Aditi
Sustainable clinical trials involve conducting trials in a socially conscious and environmentally responsible manner. This involves considering the effects of clinical trials on the environment and the populations engaged in the studies. The pharmaceutical sector, particularly clinical research, is a large contributor to greenhouse gas emissions. The need for a legal framework considering the environmental impact of hundreds of global clinical trials cannot be overstated. Clinical trials’ carbon footprint is a complex subject that calls for cooperation from various parties, including researchers, trial sponsors, healthcare providers, and regulatory organizations. The waste generated during clinical trials, including packaging materials, laboratory supplies, and hazardous waste from the disposal of clinical samples, can adversely affect public health and the environment. Therefore, addressing this issue is essential to ensure that clinical trials are conducted in an environmentally and socially responsible manner. The purpose of this study is to discuss potential strategies to cut down on carbon emissions, discuss the challenges in setting up clinical trials in an environmentally sustainable way, and highlight the importance of a precautionary approach during the various phases of conducting clinical trials. Although there is limited research on greenhouse gas emissions generated by clinical trials, it is evident that more work needs to be done in this field.
Show more [+] Less [-]Effect of Fulvic Acid on the Denitrification in Deep Subsurface Wastewater Infiltration System Full text
2023
Lv, Jingjing | Li, Jingjing | Dou, Yanyan | Chen, Guoke | Ye, Yubing | Hou, Li’an
This work aims to explore the impact of fulvic acid (FA) on denitrification within the purification process of sewage in the deep subsurface wastewater infiltration system (DSWIS). In the system, an organic glass column (height = 2.40 m; radius = 0.30 m) was filled with several layers of soil. Simulated domestic wastewater and extracted FA from landfill leachate were used in the experiments. It was found that before and after the addition of FA, COD, and NH4+-N were efficiently removed when a hydraulic load was 8 cm·d-1. Moreover, after FA addition, the removal efficiency of TN was enhanced from 67.74% to 78.01%. Organic matter transformation analysis indicated that in the under part, the shortage of carbon sources limited the denitrification prior to FA addition, resulting in a low TN removal efficiency. However, after adding FA, more FA-like substances were transferred into protein-like matters than before the addition of FA, which has helped produce more easily biodegradable organics for denitrification. So, the addition of FA could enhance the denitrification process in the system of DSWIS.
Show more [+] Less [-]Potassium Solubilizing Bacteria (KSB) and Osmopriming Mediated Morphological Changes and Triggers in Yield of Green Gram (Vigna radiata L.) Under Water-Limiting Conditions Full text
2023
Kalangutkar, A. | Siddique, A.
A field-based experiment was conducted to know the relevance of potassium solubilizing bacteria (KSB), and Osmo-priming mediated morphological changes and yielded recovery in green gram (Vigna radiata L.) under water-limiting conditions. Hence, the experiment was carried out at the research farm of Lovely Professional University. The characters like plant height, number of leaves, leaf area plant-1, and LAI were considered to track the morphological changes, while the primary branches, nodules, pods plant-1, seeds pod-1, the average length of the pod, test weight, biological yield, grain yield, and harvest index (HI) were used to determine the recovery of yield as compared to control. Among the treatments, T8 was recorded as one of the best treatments for all the morphological parameters studied, i.e., plant height (51.80 cm), number of leaves (42 plant-1), leaf area (577.27 cm2.plant-1) and LAI (1.92) while most of the yield contributing characters were found better in T6 i.e. nodules (8.3 plant-1), seeds pod-1 (10) and length of the pod (7.65 cm) except for the primary branches and the number of pods plant-1 which was remain recorded maximum in T8 (6.0 and 22). The yield of green gram and its biological yield were recorded as highest in T6 and T2 (6.83 and 24.23 g.plant-1), while HI and test weight were also noted in T6 (32.0% and 5.90 g). This study has concluded that the KSB, combined with KNO3, showed a strong potential to modify the morphological structure while the yield of green gram was in KSB + Ca(NO3)2 under water scarcity.
Show more [+] Less [-]Saccharification of Various Wastepaper Materials by Cellulase from Brown Garden Snail (Cornu aspersum) at Different Incubation pH Values Full text
2023
Ndlovu, T. M. | Van Wyk, J. P. H.
Increased solid waste pollution and the negative effect of fossil fuel consumption on the environment are issues that would require more scientific attention and application to deal effectively with these phenomena. Wastepaper, a major component of solid waste, is classified as organic waste due to the presence of cellulose, a glucose-based biopolymer that is part of its structural composition. The saccharification of cellulose into glucose, a fermentable sugar, can be achieved with a hydrolytic enzyme known as cellulase. Although cellulase from fungal species such as Trichoderma, Aspergillus, and Penicillium are well described, knowledge about cellulase isolated from the brown garden snail is limited as it has not been the subject of many research endeavors. The waste paper has been described as a suitable resource for bio-energy development due to cellulose, a structural component of this bio-material that can be degraded into glucose, a fermentable sugar. Although paper materials such as newspaper, office paper, filter paper, Woolworths and Pick and Pay (retailers) advertising paper, as well as foolscap paper, were saccharified by different cellulases, the degradation of these paper materials by garden snail cellulase is a novel investigation from our laboratory. With the effects of temperature and incubation time on this cellulase action when degraded paper materials have already been investigated and reported, this study dealt with the garden snail cellulase action when degraded paper materials at different pH values. Most of the paper materials were degraded optimally at a pH value of 6.0, while optimum saccharification was observed at pH 4.5 when newspaper and brown envelope paper were degraded, with office paper showing maximum bioconversion at pH 7.0. The difference in the structural composition of the paper materials also affects the degree of saccharification, as the amount of sugar released from the various paper materials at optimum pH values is not similar. Together with other catalytic parameters, the pH value of this enzymatic catalysis is also to be considered when designing the development of waste paper as a bio-product resource, with limiting environmental pollution as an additional advantage of this process.
Show more [+] Less [-]