Refine search
Results 1-10 of 12,721
Tackling protozoan parasites of cattle in sub-Saharan Africa Full text
2021
MacGregor, P. | Nene, Vishvanath M. | Nisbet, R.E.R.
Tackling protozoan parasites of cattle in sub-Saharan Africa Full text
2021
MacGregor, P. | Nene, Vishvanath M. | Nisbet, R.E.R.
Tackling protozoan parasites of cattle in sub-Saharan Africa. Full text
2021
Paula MacGregor | Vishvanath Nene | R Ellen R Nisbet
The strange lifestyle of multipartite viruses Full text
2016
Sicard A. | Michalakis Y. | Gutiérrez S. | Blanc S.
The strange lifestyle of multipartite viruses Full text
2016
Sicard A. | Michalakis Y. | Gutiérrez S. | Blanc S.
Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available “system” studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional. (Résumé d'auteur)
Show more [+] Less [-]The Strange Lifestyle of Multipartite Viruses. Full text
2016
Anne Sicard | Yannis Michalakis | Serafín Gutiérrez | Stéphane Blanc
Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available "system" studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.
Show more [+] Less [-]The Strange Lifestyle of Multipartite Viruses Full text
2016
Sicard, Anne | Michalakis, Yannis | Gutierrez, Serafin | Blanc, Stéphane | Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Evolution Théorique et Expérimentale (MIVEGEC-ETE) ; Perturbations, Evolution, Virulence (PEV) ; Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [Occitanie]) | Contrôle des maladies animales exotiques et émergentes (UMR CMAEE) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA) | French ANR (project acronym: ANR-Nano; grant No ANR-14-CE02-0014-01) | ANR-14-CE02-0014,Nano,Exploration de la biologie des virus multipartite(2014)
BGPI : équipe 2 | International audience | Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available “system” studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.
Show more [+] Less [-]A newly emerging alphasatellite affects banana bunchy top virus replication, transcription, siRNA production and transmission by aphids Full text
2022
Guyot, V. | Rajeswaran, R. | Chu, H.C. | Karthikeyan, C. | Laboureau, N. | Galzi, S. | Mukwa, L. | Krupovic, M. | Kumar, P. Lava | Iskra-Caruana, M.L. | Pooggin, M.
A newly emerging alphasatellite affects banana bunchy top virus replication, transcription, siRNA production and transmission by aphids Full text
2022
Guyot, V. | Rajeswaran, R. | Chu, H.C. | Karthikeyan, C. | Laboureau, N. | Galzi, S. | Mukwa, L. | Krupovic, M. | Kumar, P. Lava | Iskra-Caruana, M.L. | Pooggin, M.
Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus, family Nanoviridae) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana, followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed.
Show more [+] Less [-]A newly emerging alphasatellite affects banana bunchy top virus replication, transcription, siRNA production and transmission by aphids. Full text
2022
Valentin Guyot | Rajendran Rajeswaran | Huong Cam Chu | Chockalingam Karthikeyan | Nathalie Laboureau | Serge Galzi | Lyna F T Mukwa | Mart Krupovic | P Lava Kumar | Marie-Line Iskra-Caruana | Mikhail M Pooggin
Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus, family Nanoviridae) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana, followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed.
Show more [+] Less [-]A newly emerging alphasatellite affects banana bunchy top virus replication, transcription, siRNA production and transmission by aphids Full text
2022
Guyot, Valentin | Rajeswaran, Rajendran | Chu, Huong Cam | Karthikeyan, Chockalingam | Laboureau, Nathalie | Galzi, Serge | Mukwa, Lyna, F. T. | Krupovic, Mart | Kumar, P. Lava | Iskra-Caruana, Marie-Line | Pooggin, Mikhail M. | Plant Health Institute of Montpellier (UMR PHIM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM) | Département Systèmes Biologiques (Cirad-BIOS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Université pédagogique nationale ; Université Pédagogique Nationale | Virologie des archées - Archaeal Virology ; Université Paris Cité (UPCité)-Microbiologie Intégrative et Moléculaire (UMR6047) ; Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS) | International Institute of Tropical Agriculture [Nigeria] (IITA) ; Consultative Group on International Agricultural Research [CGIAR] (CGIAR) | Direction Générale Déléguée à la Recherche et à la Stratégie (Cirad-Dgdrs) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | CGIAR Research Program on Roots, Tubers and Bananas and the CGIAR Trust Fund (members of the Alliance for BBTV Control in Africa - BA3.4) | Institute Agro (Montpellier) PhD scholarship
International audience | Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus , family Nanoviridae ) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana , followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed.
Show more [+] Less [-]A newly emerging alphasatellite affects banana bunchy top virus replication, transcription, siRNA production and transmission by aphids Full text
2022
Guyot, Valentin | Rajeswaran, Rajendran | Chu, Huong Cam | Karthikeyan, Chockalingam | Laboureau, Nathalie | Galzi, Serge | Mukwa, Lyna F. T. | Krupovic, Mart | Kumar, P. Lava | Iskra Caruana, Marie-Line | Pooggin, Mikhail
Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus, family Nanoviridae) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana, followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed.
Show more [+] Less [-]Timelines of infection and transmission dynamics of H1N1pdm09 in swine Full text
2020
Canini, L. | Holzer, B. | Morgan, S. | Hemmink, Johanneke D. | Clark, B. | sLoLa Dynamics Consortium | Woolhouse, Mark E.J. | Tchilian, E. | Charleston, B.
Timelines of infection and transmission dynamics of H1N1pdm09 in swine Full text
2020
Canini, L. | Holzer, B. | Morgan, S. | Hemmink, Johanneke D. | Clark, B. | sLoLa Dynamics Consortium | Woolhouse, Mark E.J. | Tchilian, E. | Charleston, B.
Influenza is a major cause of mortality and morbidity worldwide. Despite numerous studies of the pathogenesis of influenza in humans and animal models the dynamics of infection and transmission in individual hosts remain poorly characterized. In this study, we experimentally modelled transmission using the H1N1pdm09 influenza A virus in pigs, which are considered a good model for influenza infection in humans. Using an experimental design that allowed us to observe individual transmission events occurring within an 18-hr period, we quantified the relationships between infectiousness, shed virus titre and antibody titre. Transmission event was observed on 60% of occasions when virus was detected in donor pig nasal swabs and transmission was more likely when donor pigs shed more virus. This led to the true infectious period (mean 3.9 days) being slightly shorter than that predicted by detection of virus (mean 4.5 days). The generation time of infection (which determines the rate of epidemic spread) was estimated for the first time in pigs at a mean of 4.6 days. We also found that the latent period of the contact pig was longer when they had been exposed to smaller amount of shed virus. Our study provides quantitative information on the time lines of infection and the dynamics of transmission that are key parts of the evidence base needed to understand the spread of influenza viruses though animal populations and, potentially, in humans.
Show more [+] Less [-]Timelines of infection and transmission dynamics of H1N1pdm09 in swine. Full text
2020
Laetitia Canini | Barbara Holzer | Sophie Morgan | Johanneke Dinie Hemmink | Becky Clark | sLoLa Dynamics Consortium | Mark E J Woolhouse | Elma Tchilian | Bryan Charleston
Influenza is a major cause of mortality and morbidity worldwide. Despite numerous studies of the pathogenesis of influenza in humans and animal models the dynamics of infection and transmission in individual hosts remain poorly characterized. In this study, we experimentally modelled transmission using the H1N1pdm09 influenza A virus in pigs, which are considered a good model for influenza infection in humans. Using an experimental design that allowed us to observe individual transmission events occurring within an 18-hr period, we quantified the relationships between infectiousness, shed virus titre and antibody titre. Transmission event was observed on 60% of occasions when virus was detected in donor pig nasal swabs and transmission was more likely when donor pigs shed more virus. This led to the true infectious period (mean 3.9 days) being slightly shorter than that predicted by detection of virus (mean 4.5 days). The generation time of infection (which determines the rate of epidemic spread) was estimated for the first time in pigs at a mean of 4.6 days. We also found that the latent period of the contact pig was longer when they had been exposed to smaller amount of shed virus. Our study provides quantitative information on the time lines of infection and the dynamics of transmission that are key parts of the evidence base needed to understand the spread of influenza viruses though animal populations and, potentially, in humans.
Show more [+] Less [-]S-acylation mediates Mungbean yellow mosaic virus AC4 localization to the plasma membrane and in turns gene silencing suppression Full text
2018
Carluccio, A.V. | Prigigallo, M.I. | Rosas Diaz, T. | Lozano Duran, R. | Stavolone, L.
S-acylation mediates Mungbean yellow mosaic virus AC4 localization to the plasma membrane and in turns gene silencing suppression Full text
2018
Carluccio, A.V. | Prigigallo, M.I. | Rosas Diaz, T. | Lozano Duran, R. | Stavolone, L.
RNA silencing plays a critical role in plant resistance against viruses. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that interfere with the cellular silencing machinery through various mechanisms not always well understood. We examined the role of Mungbean yellow mosaic virus (MYMV) AC4 and showed that it is essential for infectivity but not for virus replication. It acts as a determinant of pathogenicity and counteracts virus induced gene silencing by strongly suppressing the systemic phase of silencing whereas it does not interfere with local production of siRNA. We demonstrate the ability of AC4 to bind native 21–25 nt siRNAs in vitro by electrophoretic mobility shift assay. While most of the known VSRs have cytoplasmic localization, we observed that despite its hydrophilic nature and the absence of trans-membrane domain, MYMV AC4 specifically accumulates to the plasma membrane (PM). We show that AC4 binds to PM via S-palmitoylation, a process of post-translational modification regulating membrane–protein interactions, not known for plant viral protein before. When localized to the PM, AC4 strongly suppresses systemic silencing whereas its delocalization impairs VSR activity of the protein. We also show that AC4 interacts with the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1), a positive regulator of the cell-to-cell movement of RNAi. The absolute requirement of PM localization for direct silencing suppression activity of AC4 is novel and intriguing. We discuss a possible model of action: palmitoylated AC4 anchors to the PM by means of palmitate to acquire the optimal conformation to bind siRNAs, hinder their systemic movement and hence suppress the spread of the PTGS signal in the plant.
Show more [+] Less [-]S-acylation mediates Mungbean yellow mosaic virus AC4 localization to the plasma membrane and in turns gene silencing suppression. Full text
2018
Anna Vittoria Carluccio | Maria Isabella Prigigallo | Tabata Rosas-Diaz | Rosa Lozano-Duran | Livia Stavolone
RNA silencing plays a critical role in plant resistance against viruses. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that interfere with the cellular silencing machinery through various mechanisms not always well understood. We examined the role of Mungbean yellow mosaic virus (MYMV) AC4 and showed that it is essential for infectivity but not for virus replication. It acts as a determinant of pathogenicity and counteracts virus induced gene silencing by strongly suppressing the systemic phase of silencing whereas it does not interfere with local production of siRNA. We demonstrate the ability of AC4 to bind native 21-25 nt siRNAs in vitro by electrophoretic mobility shift assay. While most of the known VSRs have cytoplasmic localization, we observed that despite its hydrophilic nature and the absence of trans-membrane domain, MYMV AC4 specifically accumulates to the plasma membrane (PM). We show that AC4 binds to PM via S-palmitoylation, a process of post-translational modification regulating membrane-protein interactions, not known for plant viral protein before. When localized to the PM, AC4 strongly suppresses systemic silencing whereas its delocalization impairs VSR activity of the protein. We also show that AC4 interacts with the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1), a positive regulator of the cell-to-cell movement of RNAi. The absolute requirement of PM localization for direct silencing suppression activity of AC4 is novel and intriguing. We discuss a possible model of action: palmitoylated AC4 anchors to the PM by means of palmitate to acquire the optimal conformation to bind siRNAs, hinder their systemic movement and hence suppress the spread of the PTGS signal in the plant.
Show more [+] Less [-]Distribution of the phenotypic effects of random homologous recombination between two virus species Full text
2011
Vuillaume F. | Thébaud G. | Urbino C. | Forfert N. | Granier M. | Blanc S. | Peterschmitt M.
Distribution of the phenotypic effects of random homologous recombination between two virus species Full text
2011
Vuillaume F. | Thébaud G. | Urbino C. | Forfert N. | Granier M. | Blanc S. | Peterschmitt M.
Recombination has an evident impact on virus evolution and emergence of new pathotypes, and has generated an immense literature. However, the distribution of phenotypic effects caused by genome-wide random homologous recombination has never been formally investigated. Previous data on the subject have promoted the implicit view that most viral recombinant genomes are likely to be deleterious or lethal if the nucleotide identity of parental sequences is below 90%. We decided to challenge this view by creating a bank of near-random recombinants between two viral species of the genus Begomovirus (Family Geminiviridae) exhibiting 82% nucleotide identity, and by testing infectivity and in planta accumulation of recombinant clones randomly extracted from this bank. The bank was created by DNA-shuffling-a technology initially applied to the random shuffling of individual genes, and here implemented for the first time to shuffle full-length viral genomes. Together with our previously described system allowing the direct cloning of full-length infectious geminivirus genomes, it provided a unique opportunity to generate hundreds of ''mosaic'' virus genomes, directly testable for infectivity. A subset of 47 randomly chosen recombinants was sequenced, individually inoculated into tomato plants, and compared with the parental viruses. Surprisingly, our results showed that all recombinants were infectious and accumulated at levels comparable or intermediate to that of the parental clones. This indicates that, in our experimental system, despite the fact that the parental genomes differ by nearly 20%, lethal and/or large deleterious effects of recombination are very rare, in striking contrast to the common view that has emerged from previous studies published on other viruses. (Résumé d'auteur)
Show more [+] Less [-]Distribution of the phenotypic effects of random homologous recombination between two virus species. Full text
2011
Florence Vuillaume | Gaël Thébaud | Cica Urbino | Nadège Forfert | Martine Granier | Rémy Froissart | Stéphane Blanc | Michel Peterschmitt
Recombination has an evident impact on virus evolution and emergence of new pathotypes, and has generated an immense literature. However, the distribution of phenotypic effects caused by genome-wide random homologous recombination has never been formally investigated. Previous data on the subject have promoted the implicit view that most viral recombinant genomes are likely to be deleterious or lethal if the nucleotide identity of parental sequences is below 90%. We decided to challenge this view by creating a bank of near-random recombinants between two viral species of the genus Begomovirus (Family Geminiviridae) exhibiting 82% nucleotide identity, and by testing infectivity and in planta accumulation of recombinant clones randomly extracted from this bank. The bank was created by DNA-shuffling-a technology initially applied to the random shuffling of individual genes, and here implemented for the first time to shuffle full-length viral genomes. Together with our previously described system allowing the direct cloning of full-length infectious geminivirus genomes, it provided a unique opportunity to generate hundreds of "mosaic" virus genomes, directly testable for infectivity. A subset of 47 randomly chosen recombinants was sequenced, individually inoculated into tomato plants, and compared with the parental viruses. Surprisingly, our results showed that all recombinants were infectious and accumulated at levels comparable or intermediate to that of the parental clones. This indicates that, in our experimental system, despite the fact that the parental genomes differ by nearly 20%, lethal and/or large deleterious effects of recombination are very rare, in striking contrast to the common view that has emerged from previous studies published on other viruses.
Show more [+] Less [-]Distribution of the phenotypic effects of random homologous recombination between two virus species Full text
2011
Vuillaume, Florence | Thébaud, Gael | Urbino, Cica | Forfert, Nadège | Granier, Martine | Froissart, Rémy | Blanc, Stéphane | Peterschmitt, Michel | Biologie et Génétique des interactions Plantes-parasites pour la Protection Intégrée ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Centre National de la Recherche Scientifique (CNRS) | French National Research Agency (ANR) ; Centre National de la Recherche Scientifique (CNRS) ; CIRAD ; Institut National de la Recherche Agronomique (INRA)
UMR BGPI Equipe 2 et Equipe 6; | International audience | Author Summary : Recombination creates new genome combinations by joining genome fragments of distinct “parental” origin. This phenomenon, frequent in viral populations, combines mutations originally present on distinct parental genomes, increasing genetic diversity and creating “offspring” with altered biological properties. Consistently, recombination is often associated with the emergence of economically important viruses, with modified host range and virulence. In fact, recombination events can be lethal, deleterious or beneficial, but the respective frequency of these phenotypic effects is unknown and unpredictable. A generally accepted view, which we formally challenge in the present paper, is that most viral recombination events are deleterious or lethal when the parental sequences diverge by more than 10%. However, at present, no dedicated data set supports this supposition. We generated hundreds of “mosaic” genomes randomly from two plant virus species diverging by 18%, and tested a subset of 47 of these recombinants for viability and within-host accumulation. Surprisingly, all were viable, replicated, and accumulated at a pace comparable to that of the parents. Our results are in striking contrast to the current view, and show that viral recombination can have little phenotypic effect, at least in some cases, even when the parental sequences diverge by far more than 10%.
Show more [+] Less [-]Distribution of the phenotypic effects of random homologous recombination between two virus species Full text
2011
Vuillaume, Florence | Thébaud, Gael | Urbino, Cica | Forfert, Nadège | Granier, Martine | Froissart, Rémy | Blanc, Stéphane | Peterschmitt, Michel
Author Summary : Recombination creates new genome combinations by joining genome fragments of distinct “parental” origin. This phenomenon, frequent in viral populations, combines mutations originally present on distinct parental genomes, increasing genetic diversity and creating “offspring” with altered biological properties. Consistently, recombination is often associated with the emergence of economically important viruses, with modified host range and virulence. In fact, recombination events can be lethal, deleterious or beneficial, but the respective frequency of these phenotypic effects is unknown and unpredictable. A generally accepted view, which we formally challenge in the present paper, is that most viral recombination events are deleterious or lethal when the parental sequences diverge by more than 10%. However, at present, no dedicated data set supports this supposition. We generated hundreds of “mosaic” genomes randomly from two plant virus species diverging by 18%, and tested a subset of 47 of these recombinants for viability and within-host accumulation. Surprisingly, all were viable, replicated, and accumulated at a pace comparable to that of the parents. Our results are in striking contrast to the current view, and show that viral recombination can have little phenotypic effect, at least in some cases, even when the parental sequences diverge by far more than 10%. | Recombination has an evident impact on virus evolution and emergence of new pathotypes, and has generated an immense literature. However, the distribution of phenotypic effects caused by genome-wide random homologous recombination has never been formally investigated. Previous data on the subject have promoted the implicit view that most viral recombinant genomes are likely to be deleterious or lethal if the nucleotide identity of parental sequences is below 90%. We decided to challenge this view by creating a bank of near-random recombinants between two viral species of the genus Begomovirus (Family Geminiviridae) exhibiting 82% nucleotide identity, and by testing infectivity and in planta accumulation of recombinant clones randomly extracted from this bank. The bank was created by DNA-shuffling—a technology initially applied to the random shuffling of individual genes, and here implemented for the first time to shuffle full-length viral genomes. Together with our previously described system allowing the direct cloning of full-length infectious geminivirus genomes, it provided a unique opportunity to generate hundreds of “mosaic” virus genomes, directly testable for infectivity. A subset of 47 randomly chosen recombinants was sequenced, individually inoculated into tomato plants, and compared with the parental viruses. Surprisingly, our results showed that all recombinants were infectious and accumulated at levels comparable or intermediate to that of the parental clones. This indicates that, in our experimental system, despite the fact that the parental genomes differ by nearly 20%, lethal and/or large deleterious effects of recombination are very rare, in striking contrast to the common view that has emerged from previous studies published on other viruses
Show more [+] Less [-]Heterosubtypic immunity to influenza A virus infections in mallards may explain existence of multiple virus subtypes Full text
2013
Latorre-Margalef N. | Grosbois V. | Wahlgren J. | Munster V.J. | Tolf C. | Fouchier R.A.M. | Osterhaus A.D.M.E. | Olsen B. | Waldenström J.
Heterosubtypic immunity to influenza A virus infections in mallards may explain existence of multiple virus subtypes Full text
2013
Latorre-Margalef N. | Grosbois V. | Wahlgren J. | Munster V.J. | Tolf C. | Fouchier R.A.M. | Osterhaus A.D.M.E. | Olsen B. | Waldenström J.
Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV) in nature. However, knowledge of IAV infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent. Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this, 18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support for development of homosubtypic hemagglutinin (HA) immunity during the peak of IAV infections in the fall. Moreover, re-infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of natural homosubtypic and heterosubtypic immunity (p-value?=?0.02). Heterosubtypic immunity followed phylogenetic relatedness of HA subtypes, both at the level of HA clades (p-value?=?0.04) and the level of HA groups (p-value?=?0.05). In contrast, infection patterns did not support specific immunity for neuraminidase (NA) subtypes. For the H1 and H3 Clades, heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days. The strength and duration of heterosubtypic immunity has important implications for transmission dynamics of IAV in the natural reservoir, where immune escape and disruptive selection may increase HA antigenic variation and explain IAV subtype diversity. (Résumé d'auteur)
Show more [+] Less [-]Heterosubtypic immunity to influenza A virus infections in mallards may explain existence of multiple virus subtypes. Full text
2013
Neus Latorre-Margalef | Vladimir Grosbois | John Wahlgren | Vincent J Munster | Conny Tolf | Ron A M Fouchier | Albert D M E Osterhaus | Björn Olsen | Jonas Waldenström
Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV) in nature. However, knowledge of IAV infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent. Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this, 18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support for development of homosubtypic hemagglutinin (HA) immunity during the peak of IAV infections in the fall. Moreover, re-infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of natural homosubtypic and heterosubtypic immunity (p-value = 0.02). Heterosubtypic immunity followed phylogenetic relatedness of HA subtypes, both at the level of HA clades (p-value = 0.04) and the level of HA groups (p-value = 0.05). In contrast, infection patterns did not support specific immunity for neuraminidase (NA) subtypes. For the H1 and H3 Clades, heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days. The strength and duration of heterosubtypic immunity has important implications for transmission dynamics of IAV in the natural reservoir, where immune escape and disruptive selection may increase HA antigenic variation and explain IAV subtype diversity.
Show more [+] Less [-]Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks Full text
2011
Martin D.P. | Lefeuvre P. | Varsani A. | Hoareau M. | Semegni J.Y. | Dijoux B. | Vincent C. | Reynaud B. | Lett J.M.
Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks Full text
2011
Martin D.P. | Lefeuvre P. | Varsani A. | Hoareau M. | Semegni J.Y. | Dijoux B. | Vincent C. | Reynaud B. | Lett J.M.
Genetic recombination is an important process during the evolution of many virus species and occurs particularly frequently amongst begomoviruses in the single stranded DNA virus family, Geminiviridae. As in many other recombining viruses it is apparent that non-random recombination breakpoint distributions observable within begomovirus genomes sampled from nature are the product of variations both in basal recombination rates across genomes and in the over-all viability of different recombinant genomes. Whereas factors influencing basal recombination rates might include local degrees of sequence similarity between recombining genomes, nucleic acid secondary structures and genomic sensitivity to nuclease attack or breakage, the viability of recombinant genomes could be influenced by the degree to which their co-evolved protein-protein and protein-nucleotide and nucleotide-nucleotide interactions are disreputable by recombination. Here we investigate patterns of recombination that occur over 120 day long experimental infections of tomato plants with the begomoviruses Tomato yellow leaf curl virus and Tomato leaf curl Comoros virus. We show that patterns of sequence exchange between these viruses can be extraordinarily complex and present clear evidence that factors such as local degrees of sequence similarity but not genomic secondary structure strongly influence where recombination breakpoints occur. It is also apparent from our experiment that over-all patterns of recombination are strongly influenced by selection against individual recombinants displaying disrupted intra-genomic interactions such as those required for proper protein and nucleic acid folding. Crucially, we find that selection favoring the preservation of co-evolved longer-range proteinprotein and protein DNA interactions is so strong that its imprint can even be used to identify the exact sequence tracts involved in these interactions. (Résumé d'auteur)
Show more [+] Less [-]Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks. Full text
2011
Darren P Martin | Pierre Lefeuvre | Arvind Varsani | Murielle Hoareau | Jean-Yves Semegni | Betty Dijoux | Claire Vincent | Bernard Reynaud | Jean-Michel Lett
Genetic recombination is an important process during the evolution of many virus species and occurs particularly frequently amongst begomoviruses in the single stranded DNA virus family, Geminiviridae. As in many other recombining viruses it is apparent that non-random recombination breakpoint distributions observable within begomovirus genomes sampled from nature are the product of variations both in basal recombination rates across genomes and in the over-all viability of different recombinant genomes. Whereas factors influencing basal recombination rates might include local degrees of sequence similarity between recombining genomes, nucleic acid secondary structures and genomic sensitivity to nuclease attack or breakage, the viability of recombinant genomes could be influenced by the degree to which their co-evolved protein-protein and protein-nucleotide and nucleotide-nucleotide interactions are disreputable by recombination. Here we investigate patterns of recombination that occur over 120 day long experimental infections of tomato plants with the begomoviruses Tomato yellow leaf curl virus and Tomato leaf curl Comoros virus. We show that patterns of sequence exchange between these viruses can be extraordinarily complex and present clear evidence that factors such as local degrees of sequence similarity but not genomic secondary structure strongly influence where recombination breakpoints occur. It is also apparent from our experiment that over-all patterns of recombination are strongly influenced by selection against individual recombinants displaying disrupted intra-genomic interactions such as those required for proper protein and nucleic acid folding. Crucially, we find that selection favoring the preservation of co-evolved longer-range protein-protein and protein DNA interactions is so strong that its imprint can even be used to identify the exact sequence tracts involved in these interactions.
Show more [+] Less [-]The spread of Tomato Yellow leaf Curl Virus from the Middle East to the world Full text
2010
Lefeuvre P. | Martin D.P. | Harkins G.W. | Lemey P. | Gray A.J.A | Meredith S. | Lakay F. | Monjane A.L. | Lett J.M. | Varsani A.
The spread of Tomato Yellow leaf Curl Virus from the Middle East to the world Full text
2010
Lefeuvre P. | Martin D.P. | Harkins G.W. | Lemey P. | Gray A.J.A | Meredith S. | Lakay F. | Monjane A.L. | Lett J.M. | Varsani A.
The ongoing global spread of Tomato yellow leaf curl virus (TYLCV; Genus Begomovirus, Family Geminiviridae) represents a serious looming threat to tomato production in all temperate parts of the world. Whereas determining where and when TYLCV movements have occurred could help curtail its spread and prevent future movements of related viruses, determining the consequences of past TYLCV movements could reveal the ecological and economic risks associated with similar viral invasions. Towards this end we applied Bayesian phylogeographic inference and recombination analyses to available TYLCV sequences (including those of 15 new Iranian full TYLCV genomes) and reconstructed a plausible history of TYLCV's diversification and movements throughout the world. In agreement with historical accounts, our results suggest that the first TYLCVs most probably arose somewhere in the Middle East between the 1930s and 1950s (with 95% highest probability density intervals 1905-1972) and that the global spread of TYLCV only began in the 1980s after the evolution of the TYLCV-Mld and -IL strains. Despite the global distribution of TYLCV we found no convincing evidence anywhere other than the Middle East and the Western Mediterranean of epidemiologically relevant TYLCV variants arising through recombination. Although the region around Iran is both the center of present day TYLCV diversity and the site of the most intensive ongoing TYLCV evolution, the evidence indicates that the region is epidemiologically isolated, which suggests that novel TYLCV variants found there are probably not direct global threats. We instead identify the Mediterranean basin as the main launch-pad of global TYLCV movements. (Résumé d'auteur)
Show more [+] Less [-]The spread of tomato yellow leaf curl virus from the Middle East to the world. Full text
2010
Pierre Lefeuvre | Darren P Martin | Gordon Harkins | Philippe Lemey | Alistair J A Gray | Sandra Meredith | Francisco Lakay | Adérito Monjane | Jean-Michel Lett | Arvind Varsani | Jahangir Heydarnejad
The ongoing global spread of Tomato yellow leaf curl virus (TYLCV; Genus Begomovirus, Family Geminiviridae) represents a serious looming threat to tomato production in all temperate parts of the world. Whereas determining where and when TYLCV movements have occurred could help curtail its spread and prevent future movements of related viruses, determining the consequences of past TYLCV movements could reveal the ecological and economic risks associated with similar viral invasions. Towards this end we applied Bayesian phylogeographic inference and recombination analyses to available TYLCV sequences (including those of 15 new Iranian full TYLCV genomes) and reconstructed a plausible history of TYLCV's diversification and movements throughout the world. In agreement with historical accounts, our results suggest that the first TYLCVs most probably arose somewhere in the Middle East between the 1930s and 1950s (with 95% highest probability density intervals 1905-1972) and that the global spread of TYLCV only began in the 1980s after the evolution of the TYLCV-Mld and -IL strains. Despite the global distribution of TYLCV we found no convincing evidence anywhere other than the Middle East and the Western Mediterranean of epidemiologically relevant TYLCV variants arising through recombination. Although the region around Iran is both the center of present day TYLCV diversity and the site of the most intensive ongoing TYLCV evolution, the evidence indicates that the region is epidemiologically isolated, which suggests that novel TYLCV variants found there are probably not direct global threats. We instead identify the Mediterranean basin as the main launch-pad of global TYLCV movements.
Show more [+] Less [-]Unravelling human trypanotolerance: IL8 is associated with infection control whereas IL10 and TNF? are associated with subsequent disease development Full text
2014
Ilboudo H. | Bras-Gonçalves R. | Camara M. | Flori L. | Camara O. | Sakande H. | Leno M. | Petitdidier E. | Jamonneau V. | Bucheton B.
In West Africa, Trypanosoma brucei gambiense, causing human African trypanosomiasis (HAT), is associated with a great diversity of infection outcomes. In addition to patients who can be diagnosed in the early hemolymphatic phase (stage 1) or meningoencephalitic phase (stage 2), a number of individuals can mount long-lasting specific serological responses while the results of microscopic investigations are negative (SERO TL+). Evidence is now increasing to indicate that these are asymptomatic subjects with low-grade parasitemia. The goal of our study was to investigate the type of immune response occurring in these “trypanotolerant” subjects. Cytokines levels were measured in healthy endemic controls (n?=?40), stage 1 (n?=?10), early stage 2 (n?=?19), and late stage 2 patients (n?=?23) and in a cohort of SERO TL+ individuals (n?=?60) who were followed up for two years to assess the evolution of their parasitological and serological status. In contrast to HAT patients which T-cell responses appeared to be activated with increased levels of IL2, IL4, and IL10, SERO TL+ exhibited high levels of proinflammatory cytokines (IL6, IL8 and TNF?) and an almost absence of IL12p70. In SERO TL+, high levels of IL10 and low levels of TNF? were associated with an increased risk of developing HAT whereas high levels of IL8 predicted that serology would become negative. Further studies using high throughput technologies, hopefully will provide a more detailed view of the critical molecules or pathways underlying the trypanotolerant phenotype. (Résumé d'auteur)
Show more [+] Less [-]