Refine search
Results 41-50 of 305
Polymers derived from hemicellulosic parts of lignocellulosic biomass Full text
2019
Lee, Younghyun | Kwon, Eilhann E. | Lee, Jechan
Furfural, which is directly derived from the hemicellulosic parts of lignocellulosic biomass, is considered as one of the most promising platform chemicals to manufacture commodity chemical products such as polymers and their monomers. Its production has already been commercialized. In this review, potentially relevant methods for producing important chemicals from furfural, which are used as monomers for different polymers, and for the polymerization of furfural and its derivatives (e.g., furfuryl alcohol), have been discussed. First, the production of furfural from different lignocellulosic biomasses is presented. Next, the synthesis of various monomers and their highest available yields from furfural are discussed. The polymers that can be directly produced from furfural and its derivatives are explored. Finally, the challenges of producing furfural-based products have been highlighted.
Show more [+] Less [-]Moving forward in the use of aerobic granular sludge for municipal wastewater treatment: an overview Full text
2019
Sepúlveda-Mardones, Mario | Campos, José Luis | Magrí, Albert | Vidal, Gladys
Activated sludge is one of the most widely implemented technologies for municipal wastewater treatment. Yet, more restrictive environmental standards demand for more efficient technologies. Aerobic granular sludge (AGS) is a promising alternative in this context since this technology has shown potential for simultaneous organic matter and nutrient removal using smaller bioreactors and consuming less energy. However, despite such engaging claims, only ca. 40 full-scale AGS systems have been installed worldwide after 30 years of development. This reduced implementation suggests the existence of significant bottlenecks for this technology, which currently only have partially been overcome. This overview aims to analyze the recent progress in R&D concerning aerobic sludge granulation for municipal wastewater treatment via the analysis of research articles and invention patents as well as to elucidate exiting technological gaps and development opportunities. Culturing methods aiming at fast granulation, long-term stability and excellent process performance are of utmost interest for promoting massive implementation of full-scale AGS systems. Moreover, the recovery of biomaterials from waste sludge could contribute to the implementation of the biorefinery paradigm in wastewater treatment plants.
Show more [+] Less [-]Transport and fate of microplastics in wastewater treatment plants: implications to environmental health Full text
2018
Raju, Subash | Carbery, Maddison | Kuttykattil, Aswin | Senathirajah, Kala | Subashchandrabose, S. R. | Evans, Geoffrey | Thavamani, Palanisami
Global studies of microplastic (MP) pollution confirm wastewater treatment plants serve as pathways for microplastics entering terrestrial and aquatic ecosystems. The behaviour, transport and fate of microplastics in wastewater effluents remain mostly unknown, rendering wastewater-derived microplastics as a contaminant of significant concern. We critically examine the literature to understand the sources and fate of microplastics in wastewater treatment plants (WWTPs) and the implications of treated effluents admitted to soil and aquatic systems. The transport of chemical and biological contaminants is also discussed in detail, using fundamental principles of vector relationships. For the removal and reduction of microplastics, profound knowledge is required from source to solution. This review presents a comprehensive overview of the significance of microplastics as a vector of water-borne contaminants in WWTPs.
Show more [+] Less [-]A critical review of the occurrence of perfluoroalkyl acids in aqueous environments and their removal by adsorption onto carbon nanotubes Full text
2018
Oyetade, Oluwaseun A. | Varadwaj, G Bishwa Bidita | Nyamori, Vincent O. | Jonnalagadda, Sreekantha B. | Martincigh, Bice S.
The presence of perfluoroalkyl acids (PFAAs) in aquatic environments is a cause of concern, due to their toxicity, possible ecological impact and adverse effects in man. The release of these pollutants into receiving water bodies occurs primarily through the discharge of untreated wastewater and industrial effluents. Consequently, there is a need to remediate wastewater containing these compounds before its discharge. In this review, the occurrence of PFAAs in water streams is reviewed, with the aim of providing in-depth information on the harmful effects arising through exposure to these pollutants by both man and the environment. One viable strategy for the removal of PFAAs from wastewaters is adsorption. This technique is discussed in relation to a number of conventional adsorbents and they are compared with the behaviour of a more effective adsorbent, namely, carbon nanotubes (CNTs). In particular, various functionalization strategies can increase the efficiency of CNTs for the removal of PFAAs. Sorption of PFAAs onto CNTs demonstrates good removal efficiencies and equilibrium is attained faster than with conventional adsorbents. This is attributed to the inherent properties of CNTs, such as large surface area/porosity, and the ease with which new functional groups are introduced onto the walls of the tubes. The adsorption mechanism of PFAAs is primarily enhanced through electrostatic interactions; however, other intermolecular forces, such as hydrogen bonding, hydrophobic interactions and ion-exchange, also play a role. This review aims at providing information on the occurrence and fate of PFAAs and the interactions involved in their removal from aqueous solutions by CNTs.
Show more [+] Less [-]Metabolic uncouplers for controlling biomass accumulation in biological waste treatment systems Full text
2018
Gostomski, PeterAlan | De Vela, RogerJay
A number of lipophilic weak acids are known to reduce biomass production in biological waste treatment systems. A definitive mechanism on how metabolic uncouplers reduce biomass accumulation is yet to be developed. In addition to the classic uncoupler mechanism of reduced ATP production efficiency, three other mechanisms are reviewed here. Firstly, uncouplers can increase maintenance energy requirements by diverting energy to non-growth processes. Secondly, uncouplers can undermine biofilm integrity through changes in EPS production, quorum signaling molecules, and potentially, cell hydrophobicity. Finally, uncoupler toxicity can challenge the microbial diversity, leading to death of some and proliferation of new species in the biofilm with reduced biomass yield. There are observations linking these mechanisms together but more work is required to clarify them. Given the challenges of acclimation, accumulation and environmental risks associated with uncouplers, understanding how these mechanisms operate is imperative in their successful and sound application.
Show more [+] Less [-]Integrated system approach to dark fermentative biohydrogen production for enhanced yield, energy efficiency and substrate recovery Full text
2018
Sekoai, Patrick T. | Yoro, Kelvin O. | Bodunrin, Michael O. | Ayeni, Augustine O. | Daramola, Michael O.
The challenges of climate change, dwindling fossil reserves, and environmental pollution have fuelled the need to search for clean and sustainable energy resources. The process of biohydrogen has been highlighted as a propitious alternative energy of the future because it has many socio-economic benefits such as non-polluting features, the ability to use diverse feedstocks including waste materials, the process uses various microorganisms, and it is the simplest method of producing hydrogen. However, the establishment of a biohydrogen driven economy has been hindered by low process yields due to the accumulation of inhibitory products. Over the past few years, various optimization methods have been used in literature. Among these, integration of bioprocesses is gaining increasing prominence as an effective approach that could be used to achieve a theoretical yield of 4 mol H₂ mol⁻¹ glucose. In batch integrated systems, dark fermentation is used as a primary process for conversion of substrates into biohydrogen, carbon dioxide, and volatile fatty acids. This is followed by a secondary anaerobic process for further biohydrogen conversion efficiency. This review discusses the current challenges facing scale-up studies in dark fermentation process. It elucidates the potential of batch integrated systems in biohydrogen process development. Furthermore, it explores the various integrated fermentation techniques that are employed in biohydrogen process development. Finally, the review concludes with recommendations on improvement of these integrated processes for enhanced biohydrogen yields which could pave a way for the establishment of a large-scale biohydrogen production process.
Show more [+] Less [-]Soil amendments: a tool to reduce heavy metal uptake in crops for production of safe food Full text
2018
Sharma, Ashita | Nagpal, AvinashKaur
Population explosion, urbanization, crunch of resources, changes in social outlook and improper distribution of food has elicited a situation where every one in nine people are deprived of sufficient food. To increase the production and attain food security, many malpractices like cultivation on contaminated land and irrigation with wastewater are being carried out. These practices lead to the transfer of heavy metals from soil to food crops and thus food chain. Translocation of heavy metals can be reduced by decreasing the mobility of heavy metals. Amending the soil with suitable substrates helps in immobilization of heavy metals and thus reducing the uptake by plants. There is need to identify suitable soil amendments which can reduce heavy metal uptake and enhance crop yield. The present review summarizes various inorganic and organic amendments which can immobilize heavy metals and thus can be used for soil remediation.
Show more [+] Less [-]Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation Full text
2018
Karaca, Öznur | Cameselle, Claudio | Reddy, KrishnaR.
Mining practices and the absence of proper mine land reclamation has led to heavy metal contaminated sites with serious impact on the ecosystems and risk for human health. The origin of the contamination is often associated to mine tailing deposits because they are a source of the acid mine drainage (AMD). These areas are devoid of vegetation due to the harsh soil conditions that prevent the rooting of plant species. The remediation of these areas followed by revegetation is necessary to suppress the generation of the AMD and its negative effects on the ecosystems. Conventional remediation technologies for heavy metal contaminated sites are usually not applicable because of the high cost associated with chemicals and energy requirements, as well as the long treatment time to remediate large areas. In this study, the use of phytocapping for the remediation of mine tailing deposits and abandoned mine areas is reviewed. Phytocapping is cost effective, environmentally friendly and has multifunctional role against various problems of mine tailings: it provides erosion control, landscape rehabilitation, enhances the soil properties for further colonization of other more demanding vegetal species, reduces the leachability of metals downwards the groundwater, and favors the immobilization of metals forming less bioavailable species. The most critical step in phytocapping is the developing of the first vegetative cover because of the biotoxicity of the mine soil and mine tailings. Several amendment materials can be used to ameliorate soil conditions creating a favorable environment for the rooting of plants, as well as serving as a source of nutrients. Local plant species with fast growing are preferable because their adaptation to the soil and climate conditions favors their self-propagation.
Show more [+] Less [-]Trends in organic micropollutants removal in secondary treatment of sewage Full text
2018
Alvarino, T. | Lema, J. | Omil, F. | Suárez, S.
Organic micropollutants (OMPs) comprise a wide group of substances highly consumed in modern societies. There has been a growing social and scientific interest on OMPs in wastewaters in the twentyfirst century. This research paper has identified the evolution of the research trends in the period 2001–2017 on OMPs fate during secondary wastewater treatment. These trends have moved from a global perspective on the occurrence of OMPs in wastewaters to more specific research focussed on understanding their behaviour during advanced treatment processes. Based on a bibliometric analysis carried out using one of the leading scientific databases, pharmaceuticals have been identified as the main group of OMPs. An increasing number of publications have been released on the fate of pharmaceuticals in wastewater with a growing number of countries involved: from 38 publications belonging to 14 countries in first 5-year period analysed (2001–2005) up to 138 from 42 countries only in the last 2 years (2016–2017). The main operational conditions in wastewater treatment plants influencing the removal of OMPs, as well as the mechanisms involved depending on the physico-chemical characteristics of the substances are reviewed. The paper also considers the role of microbial populations, as well as technological and operational features in OMPs abatement. Finally, a specific section is dedicated to the metabolic and cometabolic biotransformations of some OMPs taking place under heterotrophic, nitrifying and anaerobic conditions, a more novel research trend explored more recently.
Show more [+] Less [-]Innovative graphene microbial platforms for domestic wastewater treatment Full text
2018
Hegab, HanaaM. | ElMekawy, Ahmed | van den Akker, Ben | Ginic-Markovic, Milena | Saint, Christopher | Newcombe, Gayle | Pant, Deepak
Supplying clean water to fulfill human requirements is one of this century’s priorities. Global water resources are barely aligned with the rising demand, which is further aggravated by rising population, climate change and water quality problems. Consequently, there is a persistent need for innovative technologies to valorize unconventional water resources such as domestic wastewater. Graphene holds promising prospects in developing domestic wastewater treatment to qualitatively enhance treatment efficiency and quantitatively increase water supply. This review highlights the existing wastewater treatment processes along with their challenges according to South Australian wastewater treatment plants (WWTPs) which are representative of many modern WWTPs. The discussion will also cover the current and potential applications of graphene for domestic wastewater treatment, as well as obstacles and research priorities required for commercialization.
Show more [+] Less [-]