Refine search
Results 21-30 of 32
The effect of kiwi berry (Actinidia arguta) on preventing and alleviating loperamide-induced constipation
2023
Jiyue Zhang | Dongnan Li | Qilin Tian | Yumeng Ding | Hanqian Jiang | Guang Xin | Shunchang Cheng | Siyi Tang | Chenyu Jin | Jinlong Tian | Bin Li
This research aimed to study the preventive and relieving outcomes of kiwi berry on constipation. The administration of kiwi berries to mice resulted in a significant increase in body weight gain of 148.2% compared to mice that were constipated. The number of stools and the water content of stools both increased by 138.5% and 106.5%, respectively. The gastrointestinal transit rate increased by 45.3%, and the time it took for the first dark stool to form decreased by 57.5%. The levels of the excitability neurotransmitters were found to be higher in the group that had been given kiwi berries in comparison to the group that had been given loperamide. The opposite results were produced by vasoactive intestinal peptide (VIP) and aquaporin-3 (AQP3). In addition, kiwi berry consumption may lessen epithelial cell apoptosis and promote colon health. All the results point to kiwi berries as an extremely promising food supplement for the prevention and relief of constipation in the future since they successfully prevent and alleviate constipation brought on by loperamide.
Show more [+] Less [-]Effects of non-starch polysaccharide on starch gelatinization and digestibility: a review
2023
Sha Li | Wenjing Chen | Abel Wend-Soo Zongo | Yuanyuan Chen | Hongshan Liang | Jing Li | Bin Li
Non-starch polysaccharides have been given wide consideration for their use in starch-based food due to their ability to improve texture, sensory attributes, and functional properties of the end product. In a binary system (starch and non-starch polysaccharides), the characteristics of starch, exemplified as gelatinization and digestibility undergo significant changes. This review article, through a combination of origin and chemical structure-based classification approach, explores the impact of non-starch polysaccharides on starch behavior, concretely for gelatinization and hydrolysis. The underlying mechanism to retard gelatinization gives rise to some colloids that can reduce water accessibility and interact with starch molecules, which vary with the origin. The interfering role of starch hydrolysis attributed to polysaccharides restrict starch swelling, the bulk viscosity, and more ordered structures occur in the mixture. Besides, the role of non-starch polysaccharides on enzymes is another factor. Therefore, this paper gives an overview of how non-starch polysaccharides interfere with starch gelatinization and digestion, which provides a comprehensive understanding of starchy products.
Show more [+] Less [-]Anti-aging activity and their mechanisms of natural food-derived peptides: current advancements
2023
Jialong Li | Jiaojiao Wang | Ning Zhang | Ying Li | Zizhe Cai | Guanghui Li | Zhongbo Liu | Zhiping Liu | Yong Wang | Xin Shao | Jing Chen
Recently, there has been a growing focus on researching ways to delay aging and protect against age-related illnesses. Small molecular exogenous peptides, sourced from dietary elements like animals, plants, and microorganisms, have demonstrated considerable potential in exerting anti-aging effects. Notably, natural food-derived peptides have exhibited enhanced stability, safety, absorption efficiency, and heightened biological activity. These attributes position them with a greater potential for mitigating aging-related disorders compared to alternative anti-aging drugs or phytochemicals. This review summarizes the origins, structural attributes, and isolation methods of natural food-derived peptides with anti-aging properties. It also explores how these external peptides improve aging-related conditions such as neurodegenerative diseases, skin aging, and metabolic disorders. The underlying mechanisms dictating their impact on well-conserved signaling pathways—encompassing oxidative stress, inflammation, apoptosis, and collagen synthesis—are meticulously elucidated. This paper engages in an insightful exploration of the key challenges and pivotal trajectories, grounded in ongoing research endeavors. As a result, this review is poised to offer authoritative scientific guidance and invaluable support for the practical implementation of natural food-derived peptides in the realm of anti-aging applications within the food, pharmaceutical, and cosmetic industries.
Show more [+] Less [-]Comparative analysis of volatile compounds in different muskmelon cultivars in Xinjiang based on HS-SPME-GC-MS and transcriptomics
2023
Yingying Fan | Binxin Jia | Xiaoqian Cao | Jun Yang | Xiaolong Li | Weizhong He | Fengjuan Liu | Cheng Wang
Volatile flavor has prompted a great amount of influence in acceptance and view points in fruit products. Melon (Pyrus communis) is an aroma-dense fruit, thus, the evaluation of volatile flavor is crucial to melon-breeding. The volatile compounds present in nine varieties of Xinjiang muskmelons were identified and analyzed using the headspace solid-phase microextraction and gas chromatography-mass spectrometry methods. In addition, transcriptomics were used to discover the differential genes in fatty acid degradation pathways. It was found that a total of 170 volatile substances, including 52 alcohols, 41 esters, 24 aldehydes, 32 ketones, 14 acids and seven phenols, were identified in the nine melons. Results of PCA showed that 3-nonanol, 2-nonanol, bis (2-ethylhexyl) adipate, and 2-methylpropanal contributed more to the flavor of melon. It was verified that high activities of acyl-coenzyme A cholesterol acyltransferase (AAT) promoted the conversion of alcohols to esters, so that the melons have a high content of esters. Four genes of long-chain acyl-CoA synthetase were mainly responsible for the large difference in volatile substances. This practice may further undermine the primary rationale for the breeding and promotion in different cultivars of muskmelon.
Show more [+] Less [-]Photooxidation stability of phytosterols with different relative spatial positions in different particles
2023
Jingjian Liu | Dan Wang | Ping Shao | Simin Feng
The aim of this study was to investigate the effects of relative spatial position of stigmasterol on its photooxidation stability in different particles. Phytosterol oxidation products (POPs) from phytosterol oxidation were successfully isolated and studied using solid phase extraction (SPE) technology in conjunction with GC-MS. The photooxidation stability of stigmasterol in four particles was as follows: zein stabilized particles (ZPs) ≈ zein-pectin stabilized particles (ZPPs) > soy protein isolate (SPI)-pectin stabilized particles (SPPs) > SPI stabilized particles (SPs). 7β-Hydroxy and 5β, 6β-epoxy was the main POPs in the first and second oxidation stages, respectively, which reached 8,945 ± 43 μg/g and 6,010 ± 289 μg/g after 240 min UV light exposure treatment in SPs. When stigmasterol was hydrophobically adsorbed on the surface of SPs, the network gel generated by pectin outside SPPs prevented photooxidation of stigmasterol. When stigmasterol was encapsulated in the interior of ZPs, the blocking effect of pectin in ZPPs became insignificant. The study provided a feasible development direction for the storage and quality control of phytosterols as dietary supplements.
Show more [+] Less [-]A review on protein based nanocarriers for polyphenols: interaction and stabilization mechanisms
2023
Yun Xiao | Talha Ahmad | Tarun Belwal | Rana Muhammad Aadil | Muhammad Siddique | Limin Pang | Yanqun Xu
Protein has been used as the carrier for protecting and targeting polyphenols and increasing their shelf-life. Interactions of a protein molecule with polyphenols are important, which change functions and physiochemical properties of the complex and provide protection to polyphenols. Interactions between proteins and polyphenols are largely non-covalent. Factors that affect such interactions include pH, temperature, and the structure of both proteins and polyphenols. Moreover, excellent stability of polyphenols can be achieved by using nanoencapsulation techniques such as emulsion, nanohydrogel, and nanocomplex formation. The use of protein combined with other compounds such as lipids and carbohydrates was found to be the most suitable carrier for polyphenols encapsulation. This review aims to describe the interaction between proteins and polyphenols, focusing on applying nanoencapsulation for increasing stability and targeted delivery of phenolic compounds.
Show more [+] Less [-]Development of active packaging films utilized natural colorants derived from plants and their diverse applications in protein-rich food products
2023
Yawen Lv | Yana Ai | Fang Fang | Hongmei Liao
With the increasing demand for environmentally friendly, safe, preservative and intelligent food packaging, there is a growing trend towards using plant-derived natural colorants that posses green, non-toxic, antioxidant, antibacterial, and pH-sensitive properties. As a result, the development of active intelligent packaging films containing plant-derived natural colorants has become a research priority in the realm of food packaging. As a novel packaging approach, it can serve as an active and intelligent packaging system to prolong shelf life and monitor food quality. On the basis of introducing several widely used natural colorants derived from plants, this review examines the preparation, structural characterization, physical properties, and functional aspects of these plant-derived pigments. The preparation procedures of various film forming substrates and natural pigment based films are also comprehensively discussed. Furthermore, the utilization of natural pigment-based films as active and intelligent packaging materials in food is discussed in depth, providing valuable insights into the future development of this cutting-edge research area.
Show more [+] Less [-]Storage stability of vitamin C fortified purple mashed potatoes processed with microwave-assisted thermal sterilization system
2023
Juhi Patel | Ashutos Parhi | Zhongwei Tang | Juming Tang | Shyam S. Sablani
Quality changes in ready-to-eat, shelf-stable foods, during storage can be influenced by many factors, such as processing, storage conditions, and the barrier properties of the packaging. This research investigated retention of vitamin C and anthocyanin in purple mashed potatoes as influenced by packaging barrier properties and encapsulation during storage after microwave assisted thermal sterilization. Purple mashed potatoes fortified with encapsulated (EVC) or non-encapsulated vitamin C (NVC) were packaged in two high-barrier polymer pouches (TLMO and PAA), processed with a pilot-scale microwave assisted thermal sterilization (MATS) system (F0 = 10.7 min), and stored at 37.8 °C for 7 months. MATS processing caused a significant increase (P < 0.05) in the oxygen transmission rates (OTRs) of PAA pouches but did not affect the barrier properties of TLMO pouches. PAA film also had a significantly higher (P < 0.05) water vapor transmission rate (WVTRs) than TLMO films, which resulted in a significantly higher (P < 0.05) weight loss in the samples packaged in PAA pouches than TLMO pouches. Purple mashed potatoes containing encapsulated vitamin C in both TLMO and PAA pouches showed the highest retention over 2 months of storage at 37.8 °C than non-encapsulated vitamin C. Additionally, purple mashed potatoes exposed to 700 lumens light showed a significantly higher (P < 0.05) deterioration in the anthocyanin, total phenolic content, color, and vitamin C. Overall, MATS processed purple mashed potatoes in high barrier polymeric packaging can minimize the quality changes when stored in dark conditions during storage and have an extended shelf life.
Show more [+] Less [-]The role of information quality in designing effective nutrition education programs for pecans
2023
Amy Szacilo | Xiao Tong | Libo Tan | Hsiangting Chen | Lingyan Kong
Pecans have many health benefits and are known for being part of a heart-healthy diet. Nutrition education is a key component in increasing pecan consumption among young consumers. In an effort to improve the efficacy of nutrition education targeting a younger demographic, this study aims to investigate how the information quality of a nutrition education program affects consumers' nutrition knowledge, trust, and intentions to recommend and try pecans. A total of 271 usable questionnaires were collected from college students at a southeast university. Our findings indicate that information quality could directly influence consumer knowledge and trust in an information source and indirectly influences consumers' willingness to recommend or try a product. This study also showed that improved consumer knowledge and trust in an information source could strongly affect their willingness to recommend pecan products. The findings of this study can be used to increase the efficacy of educational marketing strategies in the pecan industry and drive an increase in consumption among younger populations.
Show more [+] Less [-]Potential beneficial effects of functional components of edible plants on COVID-19: Based on their anti-inflammatory and inhibitory effect on SARS-CoV-2
2023
Yijing Pu | Luyao Chen | Xu He | Yuxia Ma | Jiankang Cao | Weibo Jiang
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major public health threat. Edible plants are rich in bioactive components, with a variety of functions, such as enhancing immunity, antiviral, anti-inflammatory and so on. Thus, the intake of edible plants to boost the body's resistance to COVID-19 is a promising and possibly affordable strategy. This review revisits the effects of functional components from edible plants (such as polyphenols, polysaccharides, lectin, alkaloids, polyunsaturated fatty acids, terpenoids, and saponins) on COVID-19. The inhibitory effects of bioactive components on the virus's entrance and replication, anti-inflammatory and immune enhancement are discussed. And finally, we present the prospects of using edible plant functional ingredients as vaccine adjuvants and the prospects and problems in the use of edible plant functional components for the prevention of COVID-19. Functional components of edible plants interacted with structural proteins of SARS-CoV-2 virus and key enzymes in virus recognition and replication, thereby inhibiting virus entry and replication in the host. Meanwhile, these bioactive components had anti-inflammatory effects and could inhibit cytokine storms. Therefore, we believe that functional components from edible plants can enhance human resistance to COVID-19 and can be applied in the development of new therapies.
Show more [+] Less [-]