Refine search
Results 1-10 of 24
Effects of abdominal insufflation with nitrous oxide on cardiorespiratory measurements in spontaneously breathing isoflurane-anesthetized dogs.
1993
Gross M.E. | Jones B.D. | Bergstresser D.R. | Rosenhauer R.R.
Cardiorespiratory effects of abdominal insufflation were evaluated in 8 dogs during isoflurane anesthesia. Each dog was studied 3 times, in 1 of the following orders of insufflation pressures: 10-20-30, 20-30-10, 30-20-10, 10-30-20, 20-10-30, and 30-10-20 mm of Hg. Anesthesia was induced by use of a mask, dogs were intubated, and anesthesia was maintained by isoflurane in 100% oxygen. After instrumentation, baseline values were recorded (time 0), and the abdomen was insufflated with nitrous oxide. Data were recorded at 5, 10, 15, 20, 25, and 30 minutes after insufflation. The abdomen was then desufflated, with recording of data continuing at 35 and 40 minutes. Mean arterial pressure increased at 5 minutes during 20 mm of Hg insufflation pressure, and from 20 to 30 minutes during 30 mm of Hg pressure. Tidal volume decreased from 5 to 30 minutes during 10 and 20 mm of Hg pressures, and from 5 to 40 minutes during 30 mm of Hg pressure. Minute ventilation decreased at 10 and 20 minutes during 20 mm of Hg pressure. End-tidal CO2 concentration increased from 5 to 30 minutes during 20 and 30 mm of Hg pressure. The PaCO2 decreased at 40 minutes during 10 mm of Hg pressure, at 30 minutes during 20 mm of Hg pressure, and from 10 to 40 minutes during 30 mm of Hg pressure. Values for pH decreased from 10 to 30 minutes during 20 and 30 mm of Hg pressures. The PaO2 decreased from 20 to 40 minutes during 10 mm of Hg pressure, at 30 minutes during 20 mm of Hg pressure, and from 10 to 40 minutes during 30 mm of Hg pressure. Percentage decrease in tidal volume was greater at 5 and 15 minutes with 30 mm of Hg pressure. Differences in percentage increase in end tidal CO2 concentration were observed among the 3 pressures from 5 to 30 minutes. Although significant, these changes do not preclude use of laparoscopy if insufflation pressure > 20 mm of Hg is avoided.
Show more [+] Less [-]Effect of hypercapnia on the arrhythmogenic dose of epinephrine in horses anesthetized with guaifenesin, thiamylal sodium, and halothane.
1993
Gaynor J.S. | Bednarski R.M. | Muir W.W. III
The effect of hypercapnia on the arrhythmogenic dose of epinephrine (ADE) was investigated in 14 horses. Anesthesia was induced with guaifenesin and thiamylal sodium and was maintained at an end-tidal halothane concentration between 0.86 and 0.92%. Base-apex ECG, cardiac output, and facial artery blood pressure were measured and recorded. The ADE was determined at normocapnia (arterial partial pressure of carbon dioxide [Pa(CO2)] = 35 to 45 mm of Hg), at hypercapnia (Pa(CO2) = 70 to 80 mm of Hg), and after return to normocapnia. Epinephrine was infused at arithmetically spaced increasing rates (initial rate = 0.25 micrograms/kg of body weight/min) for a maximum of 10 minutes. The ADE was defined as the lowest epinephrine infusion rate, to the nearest 0.25 micrograms/kg/min, at which 4 premature ventricular complexes occurred in a 15-second period. The ADE (mean +/- SD) during hypercapnia (1.04 +/- 0.23 micrograms/kg/min) was significantly (P < 0.05) less than the ADE at normocapnia (1.35 +/- 0.38 micrograms/kg/min), whereas the ADE after return to normocapnia (1.17 +/- 0.22 micrograms/kg/min) was not significantly different from those during normocapnia or hypercapnia. Baseline systolic and diastolic arterial pressures and cardiac output decreased after return to normocapnia. Significant differences were not found in arterial partial pressure of O2 (Pa(O2)) or in base excess during the experiment. Two horses developed ventricular fibrillation and died during normocapnic determinations of ADE. Hypercapnia was associated with an increased risk of developing ventricular arrhythmias in horses anesthetized with guaifenesin, thiamylal sodium, and halothane.
Show more [+] Less [-]Effect of gentamicin administration on the neuromuscular blockade induced by atracurium in cats.
1990
Forsyth S.F. | Ilkiw J.E. | Hildebrand S.V.
Atracurium besylate, a nondepolarizing neuromuscular blocking agent, was administered as an infusion to 8 anesthetized cats in which neuromuscular blockade was assessed, using the train-of-four response. Once 50% depression of the first-twitch (T1) response was achieved, the infusion was held constant for 60 minutes before being discontinued and the recovery time was determined. The time for recovery was recorded as the time for the train-of-four ratio (T4 ratio) to increase from 50% to 75%. After recovery, atracurium infusion was reinstituted and the cats were again maintained for 60 minutes at 50% depression. A single bolus of gentamicin sulfate (2.0 mg/kg of body weight) was administered IV, and the infusion was continued for another 60 minutes before it was discontinued and the time for recovery was recorded. Within 1 minute of gentamicin administration, the mean +/= SD T1 response decreased from 49 +/- 5% to 33 +/- 8% of baseline and the T4 ratio decreased from 28 +/- 19% to 14 +/- 11%. Peak effect occurred at 5 minutes, with a T1 response of 29 +/- 6% of baseline and a T4 ratio of 13 +/- 12%. By 60 minutes after gentamicin administration, the T1 response had increased to 38 +/- 7% of baseline and the T4 ratio had increased to 21 +/- 13%. The time for recovery significantly (P less than 0.03) increased from 9.9 +/- 3.4 minutes during the control study to 18.1 +/- 10.7 minutes during the gentamicin study. In this study, gentamicin potentiated the neuromuscular blockade induced by atracurium and increased the recovery time. Residual blockade, observed after gentamicin administration was reversed with edrophonium.
Show more [+] Less [-]Hemodynamic effects of high-frequency oscillatory ventilation in halothane-anesthetized dogs.
1989
Bednarski R.M. | Muir W.W. III
Hemodynamic effects of spontaneous ventilation, intermittent positive-pressure ventilation (IPPV), and high-frequency oscillatory ventilation (HFOV) were compared in 6 dogs during halothane anesthesia. Anesthesia was induced with IV thiamylal Na and was maintained with halothane (end-tidal concentration, 1.09%). During placement of catheters, dogs breathed spontaneously through a conventional semiclosed anesthesia circuit. Data were collected, and dogs were mechanically ventilated, using IPPV or HFOV in random order. Ventilation was adjusted to maintain PaCO2 between 38 and 43 mm of Hg during IPPV and HFOV. Cardiac index, aortic blood pressure, and maximum rate of increase of left ventricular pressure were significantly (P less than 0.05) less during HFOV than during spontaneous ventilation, whereas right atrial and pulmonary artery pressure were significantly greater during HFOV than during spontaneous ventilation. During IPPV, only the maximum rate of increase of left ventricular pressure was significantly less than that during spontaneous ventilation.
Show more [+] Less [-]Effects of ketamine, xylazine, and a combination of ketamine and xylazine in Pekin ducks.
1989
Ludders J.W. | Rode J. | Mitchell G.S. | Nordheim E.V.
Effects of ketamine, xylazine, and a combination of ketamine and xylazine were studied in 12 male Pekin ducks (7 to 12 weeks old; mean [+/- SD] body weight, 3.1 +/- 0.3 kg). After venous and arterial catheterization and fixation of a temperature probe in the cloaca, each awake duck was confined, but not restrained, in an open box in a dimly lit room. Blood pressure and lead-II ECG were recorded. Three arterial blood samples were collected every 15 minutes over a 45-minute period (control period) and were analyzed for pHa, Paco2 and Pao2. After the control period, each duck was assigned at random to 1 of 3 drug groups: (1) ketamine (KET; 20 mg/kg of body weight, IV), (2) xylazine (XYL; 1 mg/kg, IV), and (3) KET + XYL (KET 20 mg/kg and XYL, 1 mg/kg; IV). Measurements were made at 1, 5, 10, 15, 30, 45, 60, and 90 minutes after drug administration. All ducks survived the drug study. Cloacal temperature was significantly (P less than or equal to 0.05) increased above control cloacal temperature at 90 minutes after the administration of ketamine, and from 10 through 90 minutes after administration of ketamine plus xylazine. In ducks of the KET group, pHa, Paco2, and Pao2, remained unchanged after administration of the drug. In ducks of the XYL group, pHa and Pao2 decreased significantly (P less than or equal to 0.05) from control values for all time points up to and including 15 minutes after drug administration. In ducks of the KET + XYL group, pHa and Pa02 were significantly (P less than or equal to 0.05) decreased at all time points up to and including 45 and 15 minutes, respectively, after administration of the drugs. In ducks of the XYL group, Paco2 increased significantly (P less than 0.05) during the first 15 min. after drug administration, and for 45 min. after administration of KET + XYL. Results indicated that ketamine when given alone to ducks, was not associated with pulmonary depression.
Show more [+] Less [-]Effect of acepromazine on the anesthetic requirement of halothane inthe dog.
1986
Heard D.J. | Webb A.I. | Daniels R.T.
Pharmacokinetics, effects on renal function, and potentiation of atracurium-induced neuromuscular blockade after administration of a high dose of gentamicin in isoflurane-anesthetized dogs.
1996
Martinez E.A. | Mealey K.L. | Wooldridge A.A. | Mercer D.E. | Cooper J. | Slater M.R. | Hartsfield S.M.
Effect of midazolam preanesthetic administration on thiamylal induction requirement in dogs.
1991
Tranquilli W.J. | Graning L.M. | Thurmon J.C. | Benson G.J. | Moum S.G. | Lentz E.L.
The thiamylal sparing effect of midazolam was studied in 30 healthy Beagle and mixed-breed dogs. Using a replicated Latin square design, all dogs were given placebo (saline solution) and 0.025, 0.05, 0.1, and 0.2 mg of midazolam/kg of body weight prior to IV administration of thiamylal sodium. The 0.1 and 0.2 mg/kg dosages significantly decreased the amount of thiamylal required to obtund swallowing reflex and easily achieve endotracheal intubation. Midazolam at 0.1 and 0.2 mg/kg reduced thiamylal requirement by 16.4% and 18.9%, respectively, whereas the 0.05 mg/kg dosage decreased thiamylal requirement by only 6.8%. The 0.2 mg/kg dosage did not further decrease thiamylal requirement beyond that achieved with the 0.1 mg/kg dosage of midazolam. This study demonstrates that the preanesthetic IV administration of midazolam reduces the thiamylal dose necessary to accomplish intubation. The optimal preanesthetic dosage (lowest dosage with significant effect) was 0.1 mg/kg.
Show more [+] Less [-]Cardiovascular effects of butorphanol administration in isoflurane-O2 anesthetized healthy dogs.
1989
Tyner C.L. | Greene S.A. | Hartsfield S.M.
Cardiovascular consequences of butorphanol tartrate (0.2 mg/kg of body weight, IV) administration during isoflurane (1.7% end-tidal concentration) anesthesia were determined in mechanically ventilated healthy dogs. Butorphanol administration caused significant (P less than or equal to 0.05) reductions in mean, systolic, and diastolic arterial blood pressures; cardiac output; and rate-pressure product.
Show more [+] Less [-]Arterial hypotension and the development of postanesthetic myopathy in halothane-anesthetized horses.
1987
Grandy J.L. | Steffey E.P. | Hodgson D.S. | Woliner M.J.