Refine search
Results 1-2 of 2
Effect of a syringe aspiration technique versus a mechanical suction technique and use of N-butylscopolammonium bromide on the quantity and quality of bronchoalveolar lavage fluid samples obtained from horses with the summer pasture endophenotype of equine asthma
2018
Bowser, Jacquelyn E. | Costa, Lais R. R. | Rodil, Alba U. | Lopp, Christine T. | Johnson, Melanie E. | Wills, Robert W. | Swiderski, Cyprianna E.
OBJECTIVE To evaluate the effect of 2 bronchoalveolar lavage (BAL) sampling techniques and the use of N-butylscopolammonium bromide (NBB) on the quantity and quality of BAL fluid (BALF) samples obtained from horses with the summer pasture endophenotype of equine asthma. ANIMALS 8 horses with the summer pasture endophenotype of equine asthma. PROCEDURES BAL was performed bilaterally (right and left lung sites) with a flexible videoendoscope passed through the left or right nasal passage. During lavage of the first lung site, a BALF sample was collected by means of either gentle syringe aspiration or mechanical suction with a pressure-regulated wall-mounted suction pump. The endoscope was then maneuvered into the contralateral lung site, and lavage was performed with the alternate fluid retrieval technique. For each horse, BAL was performed bilaterally once with and once without premedication with NBB (21-day interval). The BALF samples retrieved were evaluated for volume, total cell count, differential cell count, RBC count, and total protein concentration. RESULTS Use of syringe aspiration significantly increased total BALF volume (mean volume increase, 40 mL [approx 7.5% yield]) and decreased total RBC count (mean decrease, 142 cells/μL), compared with use of mechanical suction. The BALF nucleated cell count and differential cell count did not differ between BAL procedures. Use of NBB had no effect on BALF retrieval. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that retrieval of BALF by syringe aspiration may increase yield and reduce barotrauma in horses at increased risk of bronchoconstriction and bronchiolar collapse. Further studies to determine the usefulness of NBB and other bronchodilators during BAL procedures in horses are warranted.
Show more [+] Less [-]Effects of grape seed extract, lutein, and fish oil on responses of canine lens epithelial cells in vitro
2018
Miller, Eric J. | Gemensky-Metzler, Anne J. | Wilkie, David A. | Wynne, Rachel M. | Curto, Elizabeth M. | Chandler, Heather L.
OBJECTIVE To determine the effects of grape seed extract (GSE), lutein, and fish oil containing omega-3 fatty acids on oxidative stress, migration, proliferation, and viability of lens epithelial cells (LECs). SAMPLE Lens capsules or cultured LECs obtained from canine cadavers. PROCEDURES An antioxidant reductive capacity assay was used to determine reducing capability of each substance. The LECs were cultured and incubated with various substances, including N-acetyl cysteine (NAC), when appropriate, and dimethyl sulfoxide (DMSO) as positive and vehicle control substances, respectively. A dichlorofluorescein assay was used to evaluate reactive oxygen species (ROS) production, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine cell viability. Ex vivo posterior capsule opacification (PCO) was used to evaluate LEC migration and proliferation. RESULTS Antioxidant reductive effects of GSE surpassed those of NAC, lutein, and fish oil containing omega-3 fatty acids. The GSE reduced ROS production in LECs, compared with the DMSO vehicle control, whereas lutein was pro-oxidative. All test substances reduced cell viability. Ex vivo PCO was not altered by GSE, was decreased by lutein, and was increased by fish oil containing omega-3 fatty acids, compared with results for the DMSO vehicle control. CONCLUSIONS AND CLINICAL RELEVANCE Only GSE had significant antioxidant capabilities and reduced ROS production; however, no effect on ex vivo PCO was detected. Fish oil containing omega-3 fatty acids increased ex vivo PCO. No conclusions could be made regarding antioxidant effects of these substances on LECs. These findings suggested that the substances will not decrease PCO.
Show more [+] Less [-]