Refine search
Results 1-5 of 5
Anaplasma marginale in tick cell culture
1989
Hidalgo, R.J. | Jones, E.W. | Brown, J.E. | Ainsworth, A.J.
Anaplasma marginale was propagated in a tick cell line derived from Dermacentor variabilis embryos. The rickettsial organism was identified and monitored in culture by transmission electron microscopy and the indirect immunofluorescence technique, using specific monoclonal antibodies. Inoculation of the embryonic tick cell line with midguts of infected adult ticks (culture 1), nymphal ticks (culture 2) and adult ticks that were infected as nymphs and dissected as adults (culture 3) resulted in 3 continuous cultures of A marginale. Culture 1 had been maintained through 22 passages over a 11-month period; cultures 2 and 3 had been maintained for 18 passages over a 9-month period. Growth of A marginale in the cell line began in the area of the nuclear membrane at approximately 4 days after inoculation or transfer. Thereafter, the organisms were observed in inclusions scattered throughout the cytoplasm of the host cells. Maximal growth of the organism occurred at 7 to 14 days, after which numbers of inclusions rapidly decreased to minimal or undetectable levels. The organism began new cycles of growth with each 1:5 to 1:10 split and transfer of the host cells. Electron microscopy of recently infected cells revealed a morphology of the organism that closely resembled that observed in marginal bodies of infected erythrocytes. After several passages, A marginale organisms had a varied morphology and resembled the organism described in midgut cells of naturally infected ticks. Substitution of adult bovine serum for fetal bovine serum and adjustment of the pH of the medium from 6.9 to 7.4 resulted in several-fold increases in amount of growth and reduced the period required to reach maximal growth to a predictable time of 5 to 7 days. The importance and potential of this method of continuous laboratory propagation of A marginale are discussed.
Show more [+] Less [-]Transstadial and attempted transovarial transmission of Anaplasma marginale by Dermacentor variabilis
1989
Stich, R.W. | Kocan, K.M. | Palmer, G.H. | Ewing, S.A. | Hair, J.A. | Barron, S.J.
Transstadial and transovarial transmission of Anaplasma marginale by Dermacentor variabilis were attempted with ticks exposed to the organism once by feeding as larvae or nymphs, and twice by feeding as larvae and nymphs. Typical colonies of A marginale were in gut tissues of adults that were infected as larvae, larvae and nymphs, and as nymphs; repeated exposure of ticks did not appear to result in an increase in the number of colonies in the gut of subsequently molted adults nor did it affect severity of the clinical disease that developed in cattle they fed on. In contrast, colonies of A marginale were not found in the midgut epithelium of unfed nymphs exposed as larvae, even though companion nymphs transmitted the parasite, causing severe clinical anaplasmosis in susceptible calves. The organism was not transmitted transovarially by F1 larvae or nymphs from the groups exposed as parent larvae, nymphs, larvae and nymphs, and as adults. Some of the calves fed on by F1 progeny had a few erythrocytic marginale bodies that looked suspiciously like A marginale, as well as postchallenge exposure prepatent periods that were longer than other calves in the transovarial transmission study. Sera from these calves were tested for antibody to A marginale, using a highly sensitive immunoblot technique. Antibodies were not detected in any of the sera.
Show more [+] Less [-]Detection of colonies of Anaplasma marginale in salivary glands of three Dermacentor spp infected as nymphs or adults
1989
Stiller, D. | Kocan, K.M. | Edwards, W. | Ewing, S.A. | Hair, J.A. | Barron, S.J.
Salivary glands from males of 3 Dermacentor species (D andersoni, D variabilis and D occidentalis) that were infected with either the Virginia or Idaho isolate of Anaplasma marginale as nymphs or adults were examined for colonies of A marginale by use of light and electron microscopy. Prior to dissection of salivary glands, exposed ticks were held at 25 C for 15 to 18 days, followed by a 3-day incubation at 37 C. Ticks of 2 species transmitted A marginale to calves; the third tick species was confirmed infected by demonstration of typical colonies in tick gut cells, but transmission was not attempted; Colonies of A marginale were seen with light microscopy in salivary glands of all 3 species of ticks; they were located in acinar cells that contained simple granules. Colonies varied morphologically from small, compact ones to larger structures that contained distinct organisms and often were adjacent to the host cell nucleus. Electron microscopy confirmed that the colonies were rickettsial organisms. Morphologic features of A marginale varied and included reticulated forms, forms with electron-dense centers, and small particles; these various forms were similar to those described previously in midgut epithelial cells of ticks. We believe that the organism seen within tick salivary glands may replicate in the glands before its transmission to the vertebrate host.
Show more [+] Less [-]Active surveillance of Anaplasma marginale in populations of arthropod vectors (Acari: Ixodidae; Diptera: Tabanidae) during and after an outbreak of bovine anaplasmosis in southern Manitoba, Canada
2016
Yunik, Matthew E. M. | Galloway, Terry D. | Lindsay, L Robbin
Bovine anaplasmosis is the disease caused by the bacterium Anaplasma marginale. It can cause production loss and death in cattle and bison. This was a reportable disease in Canada until April 2014. Before then, infected herds were quarantined and culled, removing infected animals. In North America, A. marginale is biologically vectored by hard ticks (Acari: Ixodidae), Dermacentor variabilis and D. andersoni. Biting flies, particularly horse flies (Diptera: Tabanidae), can also act as mechanical vectors. An outbreak of bovine anaplasmosis, consisting of 14 herds, was detected in southern Manitoba in 2008. This outbreak lasted multiple rounds of testing and culling before eradication in 2011, suggesting local maintenance of the pathogen was occurring. We applied novel approaches to examine the vector ecology of this disease in this region. We did not detect A. marginale by screening of 2056 D. variabilis (2011 and 2012) and 520 horse flies (2011) using polymerase chain reaction (PCR).
Show more [+] Less [-]Infectivity and antigenicity of Anaplasma marginale from tick cell culture
1989
Hidalgo, R.J. | Palmer, G.H. | Jones, E.W. | Brown, J.E. | Ainsworth, A.J.
The infectivity and immunogenicity of Anaplasma marginale grown in a tick cell culture from embryonic Dermacentor variabilis ticks were assessed in splenectomized and intact calves, respectively. Culture 1 consisted of the cell line inoculated with midguts of adult ticks infected with the Mississippi isolate of A marginale and dissected 5 to 10 days after repletion and detachment from an experimentally infected calf. Cultures 2 and 3 consisted of the cell line inoculated with midguts of ticks infected with the Virginia isolate of the organism. Inoculum for culture 2 was derived from nymphal ticks dissected 5 to 10 days after repletion and detachment from the infected calf; inoculum for culture 3 was midguts from adult ticks that were fed as nymphs, allowed to molt in the laboratory and dissected 21 to 24 days after molting. In trial 1, cultures 1, 2, and 3 were maintained at pH 6.9 and incubated at 28 C; in trial 2, cultures 1 and 3 were maintained at pH 7.4 and incubated at either 28 C or 37 C. Cultures 1, 2, and 3 failed to induce infection when injected IV and SC into 6 calves in 2 separate trials. Prechallenge sera from these calves reacted with 2 purified Anaplasma antigens in the ELISA, but failed to react in the complement-fixation test. Results of a trial to use cultures 1 and 3 in combination with an oil-in-water adjuvant to immunize intact calves against A marginale were inconclusive. However, prechallenge sera from immunized calves reacted with the 2 purified Anaplasma initial body antigens in the ELISA but failed to react in the complement-fixation text. When reacted against electrophoretically separated A marginale initial body proteins disrupted by sodium dodecyl sulfate, prechallenge serums from calves used in infectivity and immunization trials reacted with a majority of the antigens precipitated by an animal experimentally infected by inoculation of infected blood. This offers additional evidence that A marginale was maintained in the tick culture for up to 11 months and that the organism in culture antigens similar, if not identical, to the erythrocytic stage of the rickettsial agent. The importance of the laboratory culture of A marginale is discussed.
Show more [+] Less [-]