Refine search
Results 1-10 of 15
Comparison of cardiac function in double-muscled calves and in calves with conventional muscular conformation.
1994
Armory H. | Desmecht D.J.M. | Linden A.S. | McEntee K. | Rollin F.A. | Beduin J.M.L. | Genicot B.C. | D'orio V. | Lekeux P.M.
During growth, central venous, right ventricular, pulmonary arterial, Pulmonary capillary wedge, and systemic arterial pressures, heart rate, and cardiac Output were repeatedly measured in 41 Friesian calves, considered as having conventional muscular conformation, and in 19 Belgian White and Blue double-muscled calves. A total of 123 and 70 recordings were collected in conventional and double-muscled calves, respectively. These circulatory indices were calculated: stroke volume, cardiac and stroke indices, pulmonary and systemic pulse pressures, pulmonary and systemic vascular resistance indices, and right and left ventricular work indices. Results indicated that systemic arterial and pulse pressures, as well as cardiac output, stroke volume, cardiac and stroke indices, and right and left ventricular work indices were significantly (P less than or equal to 0.05 to 0.001) lower but, in contrast, pulmonary and systemic vascular resistance indices were significantly (P less than or equal to 0.001) higher in double-muscled than in conventional calves. Right-sided vascular pressures and heart rate were similar in the 2 groups. These results indicated that global cardiac performance may be considerably poorer in double-muscled calves. Diminished cardiac performance of double-muscled calves appears to be related neither to relative bradycardia nor to reduced ventricular preload. The potential role of increased ventricular afterload or of reduced myocardial contractility in double-muscled cattle should be determined by direct measurements.
Show more [+] Less [-]Cardiopulmonary effects of positioning pregnant cows in dorsal recumbency during the third trimester.
1994
Dunlop C.I. | Hodgson D.S. | Smith J.A. | Chapman P.L. | Tyler L.M.
The uterine hemodynamic response to maternal positioning in dorsal recumbency was evaluated in 7 conscious pregnant cows during the third trimester. Anesthetic or sedative drugs were not administered. Uterine artery flow was measured, using a previously implanted ultrasonic flow probe. Catheters implanted in the uterine artery and vein were used for measurement of blood pressure and for blood sample collections. Heart rate, systemic arterial pressure, uterine arterial blood flow, arterial and venous oxygen and carbon dioxide tensions, and pH were measured in cows in standing position. Cows were cast with ropes and positioned in dorsal recumbency, then measurements were repeated at 15 and 30 minutes. Compared with standing measurements, dorsal recumbency caused 50% increase in heart rate and 44% increase in arterial blood pressure. Uterine artery flow did not change significantly. Despite increased ventilation, arterial oxygenation was reduced during dorsal recumbency. There were minimal differences between measurements at 15 and 30 minutes of dorsal recumbency.
Show more [+] Less [-]Effects of ketamine, xylazine, and a combination of ketamine and xylazine in Pekin ducks.
1989
Ludders J.W. | Rode J. | Mitchell G.S. | Nordheim E.V.
Effects of ketamine, xylazine, and a combination of ketamine and xylazine were studied in 12 male Pekin ducks (7 to 12 weeks old; mean [+/- SD] body weight, 3.1 +/- 0.3 kg). After venous and arterial catheterization and fixation of a temperature probe in the cloaca, each awake duck was confined, but not restrained, in an open box in a dimly lit room. Blood pressure and lead-II ECG were recorded. Three arterial blood samples were collected every 15 minutes over a 45-minute period (control period) and were analyzed for pHa, Paco2 and Pao2. After the control period, each duck was assigned at random to 1 of 3 drug groups: (1) ketamine (KET; 20 mg/kg of body weight, IV), (2) xylazine (XYL; 1 mg/kg, IV), and (3) KET + XYL (KET 20 mg/kg and XYL, 1 mg/kg; IV). Measurements were made at 1, 5, 10, 15, 30, 45, 60, and 90 minutes after drug administration. All ducks survived the drug study. Cloacal temperature was significantly (P less than or equal to 0.05) increased above control cloacal temperature at 90 minutes after the administration of ketamine, and from 10 through 90 minutes after administration of ketamine plus xylazine. In ducks of the KET group, pHa, Paco2, and Pao2, remained unchanged after administration of the drug. In ducks of the XYL group, pHa and Pao2 decreased significantly (P less than or equal to 0.05) from control values for all time points up to and including 15 minutes after drug administration. In ducks of the KET + XYL group, pHa and Pa02 were significantly (P less than or equal to 0.05) decreased at all time points up to and including 45 and 15 minutes, respectively, after administration of the drugs. In ducks of the XYL group, Paco2 increased significantly (P less than 0.05) during the first 15 min. after drug administration, and for 45 min. after administration of KET + XYL. Results indicated that ketamine when given alone to ducks, was not associated with pulmonary depression.
Show more [+] Less [-]Evaluation of analgesia and cardiorespiratory effects of epidurally administered butorphanol in isoflurane-anesthetized dogs.
1996
Troncy E. | Cuvellliez S.G. | Blais D.
Comparison of antinociceptive, cardiovascular, and respiratory effects, head ptosis, and position of pelvic limbs in mares after caudal epidural administration of xylazine and detomidine hydrochloride solution.
1996
Skarda R.T. | Muir W.W. III.
Effects of abdominal insufflation with nitrous oxide on cardiorespiratory measurements in spontaneously breathing isoflurane-anesthetized dogs.
1993
Gross M.E. | Jones B.D. | Bergstresser D.R. | Rosenhauer R.R.
Cardiorespiratory effects of abdominal insufflation were evaluated in 8 dogs during isoflurane anesthesia. Each dog was studied 3 times, in 1 of the following orders of insufflation pressures: 10-20-30, 20-30-10, 30-20-10, 10-30-20, 20-10-30, and 30-10-20 mm of Hg. Anesthesia was induced by use of a mask, dogs were intubated, and anesthesia was maintained by isoflurane in 100% oxygen. After instrumentation, baseline values were recorded (time 0), and the abdomen was insufflated with nitrous oxide. Data were recorded at 5, 10, 15, 20, 25, and 30 minutes after insufflation. The abdomen was then desufflated, with recording of data continuing at 35 and 40 minutes. Mean arterial pressure increased at 5 minutes during 20 mm of Hg insufflation pressure, and from 20 to 30 minutes during 30 mm of Hg pressure. Tidal volume decreased from 5 to 30 minutes during 10 and 20 mm of Hg pressures, and from 5 to 40 minutes during 30 mm of Hg pressure. Minute ventilation decreased at 10 and 20 minutes during 20 mm of Hg pressure. End-tidal CO2 concentration increased from 5 to 30 minutes during 20 and 30 mm of Hg pressure. The PaCO2 decreased at 40 minutes during 10 mm of Hg pressure, at 30 minutes during 20 mm of Hg pressure, and from 10 to 40 minutes during 30 mm of Hg pressure. Values for pH decreased from 10 to 30 minutes during 20 and 30 mm of Hg pressures. The PaO2 decreased from 20 to 40 minutes during 10 mm of Hg pressure, at 30 minutes during 20 mm of Hg pressure, and from 10 to 40 minutes during 30 mm of Hg pressure. Percentage decrease in tidal volume was greater at 5 and 15 minutes with 30 mm of Hg pressure. Differences in percentage increase in end tidal CO2 concentration were observed among the 3 pressures from 5 to 30 minutes. Although significant, these changes do not preclude use of laparoscopy if insufflation pressure > 20 mm of Hg is avoided.
Show more [+] Less [-]Circulatory and respiratory responses of spontaneously breathing, laterally recumbent horses to 12 hours of halothane anesthesia.
1993
Steffey E.P. | Dunlop C.I. | Cullen L.K. | Hodgson D.S. | Giri S.N. | Willits N. | Woliner M.J. | Jarvis K.A. | Smith C.M. | Elliott A.R.
Cardiovascular and at accompany markedly long periods (12 hours) of halothane anesthesia were characterized. Eight spontaneously breathing horses were studied while they were positioned in left lateral recumbency and anesthetized only with halothane in oxygen maintained at a constant end-tidal concentration of 1.06% (equivalent to 1.2 times the minimal alveolar concentration for horses). Results of circulatory and respiratory measurements during the first 5 hours of constant conditions were similar to those previously reported from this laboratory (ie, a time-related significant increase in systemic arterial blood pressure, cardiac output, stroke volume, left ventricular work, PCV, plasma total solids concentration, and little change in respiratory system function). Beyond 5 hours of anesthesia, arterial blood pressure did not further increase, but remained above baseline. Cardiac output continued to increase, because heart rate significantly (P < 0.05) increased. Peak inspiratory gas flow increased significantly (P < 0.05) in later stages of anesthesia. There was a significant decrease in inspiratory time beginning at 4 hours. Although PaO2, and PaCO2, did not significantly change during the 12 hours of study, PVO2 increased significantly P < 0.05) and progressively with time, beginning 6 hours after the beginning of constant conditions. Metabolic acidosis increased with time significantly [P < 0.05] starting at 9 hours), despite supplemental IV administered NaHCO3. Plasma concentrations of eicosanoids: 6-ketoprostaglandin F1 alpha (PGF1 alpha, a stable metabolite of PGI2), PGF2 alpha, PGE, and thromboxane (TxB2, a stable metabolite of TxA2) were measured in 5 of the 8 horses before and during anesthesia. Significant changes from preanesthetic values were not Significant changes from preanesthetic values were not detected. Dynamic thoracic wall and lung compliances decreased with time.
Show more [+] Less [-]Cardiopulmonary effects of etomidate in hypovolemic dogs.
1992
Pascoe P.J. | Ilkiw J.E. | Haskins S.C. | Patz J.D.
Cardiopulmonary effects of etomidate administration were studied in hypovolemic dogs. Baseline cardiopulmonary data were recorded from conscious dogs after instrumentation. Hypovolemia was induced by withdrawal of blood from dogs until mean arterial pressure of 60 mm of Hg was achieved. Blood pressure was maintained at 60 mm of Hg for 1 hour, by further removal or replacement of blood. One milligram of etomidate/kg of body weight was then administered IV to 7 dogs, and the cardiopulmonary effects were measured 3, 15, 30, and 60 minutes later. After blood withdrawal and prior to etomidate administration, heart rate, arterial oxygen tension, and oxygen utilization ratio increased. Compared with baseline values, the following variables were decreased: mean arterial pressure, mean pulmonary arterial pressure, central venous pressure, pulmonary wedge pressure, cardiac index, oxygen delivery, mixed venous oxygen tension, mixed venous oxygen content, and arterial carbon dioxide tension. Three minutes after etomidate administration, central venous pressure, mixed venous and arterial carbon dioxide tension, and venous admixture increased, and heart rate, arterial and venous pH, and arterial oxygen tension decreased, compared with values measured immediately prior to etomidate administration. Fifteen minutes after etomidate injection, arterial pH and heart rate remained decreased. At 30 minutes, only heart rate was decreased, and at 60 minutes, mean arterial pressure was increased, compared with values measured before etomidate administration. Results of this study indicate that etomidate induces minimal changes in cardiopulmonary function when administered to hypovolemic dogs.
Show more [+] Less [-]Influence of tolazoline on caudal epidural administration of xylazine in cattle.
1990
Skarda R.T. | St Jean G. | Muir W.W. III
Eight adult female cattle (6 Holstein, 1 Jersey, 1 Brown Swiss) were used to determine the antagonistic effects of tolazoline, an alpha 2-adrenoceptor antagonist, on xylazine-induced (via caudal epidural administration) depression of CNS, respiratory, and cardiovascular activity and rumen motility. A 2% solution of xylazine HCl was injected into the epidural space at the first coccygeal interspace, using a dosage of 0.05 mg/kg of body weight, diluted to a 5-ml volume with sterile water, and administered at a rate of approximately 1 ml/30 s. Eight minutes after xylazine injection, either tolazoline (0.3 mg/kg) or saline solution (4 ml) was administered IV. All 8 cattle were treated, using both regimens in a random sequence; at least 1 week elapsed between treatments. Epidurally administered xylazine induced caudal analgesia (S3 to coccyx), as evaluated by no response to superficial and deep muscular pinprick, and induced sedation, cardiopulmonary depression, and inhibition of rumen motility, but all cattle remained standing. Tolazoline effectively reversed xylazine-induced rumen hypomotility, and partially antagonized xylazine-induced cardiopulmonary depression without affecting sedation and desirable local (S3 to coccyx) analgesic effects.
Show more [+] Less [-]Cardiovascular effects of butorphanol administration in isoflurane-O2 anesthetized healthy dogs.
1989
Tyner C.L. | Greene S.A. | Hartsfield S.M.
Cardiovascular consequences of butorphanol tartrate (0.2 mg/kg of body weight, IV) administration during isoflurane (1.7% end-tidal concentration) anesthesia were determined in mechanically ventilated healthy dogs. Butorphanol administration caused significant (P less than or equal to 0.05) reductions in mean, systolic, and diastolic arterial blood pressures; cardiac output; and rate-pressure product.
Show more [+] Less [-]