Refine search
Results 1-10 of 1,191
Role of Biotechnology and Genetic Engineering in Bioremediation of Cadmium Pollution
2024
Kumar, A. | Mukherjee, G. | Gupta, S.
Cadmium (Cd) is ubiquitous and an unessential trace element existing in the environment. Anthropogenic activities and applications of synthetic phosphate fertilizers greatly enhance the concentration of Cadmium in the environment, which proves to be carcinogenic. The long-term effects of heavy metals contamination on plants and animals have recently become a major public health concern. Thanks to the application of science and technology, new environmental initiatives can have a lower environmental impact significantly. The role of microbes is very well known and must be considered as potential pollutant removers. Microbial flora can remove heavy metals and oil from contaminated soil and water. In comparison to conventional techniques, bioremediation itself proved to be a more potent technique because the established mechanisms render it ineffective. Biotechnological advancements are inherently harmful to the environment because they have the potential to reduce metal pollution. Pollutants in the environment can be effectively removed using bioremediation. Both native and introduced species can thrive in a microorganism-friendly environment.
Show more [+] Less [-]Response and Tolerance of Cyanobacterial Exopolysaccharides to Rice Field Herbicide 2,4-D
2024
Ryntathiang, Sukjailin | Sachu, Meguovilie | Syiem, Mayashree B.
This study aimed to check how herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) affects the production of EPS and its composition, growth, and biomass, as well as morphology in a cyanobacterial species isolated from a rice field in Meghalaya, India. Compared to the control cells, the growth of the organism measured in terms of chlorophyll concentration increased after being exposed to 10 and 20 ppm 2,4-D. However, cultures treated with 30 and 40 ppm experienced a decrease in their growth. Likewise, the biomass content of the organism experienced a minuscule increase in content upon exposure to 10 and 20 ppm 2,4-D but was compromised upon exposure to higher doses. When exposed to 10 ppm, the total EPS content, which includes the RPS and CPS content, showed a substantial increase. Maximum EPS production was seen at 20 ppm 2,4-D. However, exposure to 30 and 40 ppm 2,4-D, EPS production in the organism experienced a significant reduction, respectively. All components of EPS, such as uronic acid, neutral sugar, and proteins, individually showed an increase in 10 and 20 ppm 2, 4-D. A similar trend was seen in the organism’s bio-flocculating activity, which increased when exposed to 10 and 20 ppm, respectively. However, this activity in cells exposed to 30 and 40 ppm 2,4-D was severely reduced. Not only the content of EPS but the rate of EPS production was also enhanced in lower concentrations of 2,4-D. Although exposure to 30 ppm 2,4-D, the rate of EPS production was not significantly compromised, 40 ppm exposure adversely affected the rate of EPS production. Furthermore, visualization using scanning electron microscopy revealed the morphological changes induced by the herbicide 2,4-D.
Show more [+] Less [-]Biodegradation of Cellulosic Wastes and Deinking of Colored Paper with Isolated Novel Cellulolytic Bacteria
2024
Sarwan, Jyoti | Bose, Jagadeesh Chandra | Kumar, Shivam | Bhargav, Shruti Singh | Dixit, Sharad Kumar | Sharma, Muskan | Mittal, Komal | Kumar, Gurmeet | Uddin, Nazim
Biofuels are the cheapest source of energy, and the continuous decline of traditional sources of energy with the increasing population leads to looking for alternatives to reduce the consumption of traditional sources of energy. Bioethanol production from lignocellulosic wastes and cellulosic wastes is not a new approach for fuel production but a cheap and accessible way for the production of fuel. Bacillus is one of the major species that can act as a source of diversified enzymes. In this study, it was emphasized on screening and isolation of a novel, characterization, and best catalytic action on both celluloses and proteins in the presence of different carbon and nitrogen sources. It was observed the effective catalytic breakdown of cellulose with the crude enzyme to glucose allowed fur for fermentation with Saccharomyces, ultimately leading to the generation of alcohol. The study aims to isolate the microbes that can produce cellulases and enzymes and could be used for biodegradation to produce ethanol in the reaction. The maximum enzyme activity was achieved at 3.112 UI with optimized pH and temperature, and the maximum conversion of sugars into alcohol was about 70% in the newspaper, cartons, colored paper, and disposable paper cups. An essential observation was the decolorization of the origami craft paper within 24 hours. The study was involved in enhancing the maximum Enzyme activity of cellulases from different cellulosic raw materials. Hence, it was achieved by JCB strain, optimization of pH, temperature, and acids for the biodegradation. The presence of peaks at 3200 and 2900 was a confirmation of ethanol bonds in the biodegradation reaction mixtures.
Show more [+] Less [-]Sustainable Water Conservation and Management Practices: A Perception Survey of the Farmers of Haryana, India
2024
Kohli, Manika | Grover, Vinakshi
In order to ensure water sustainability, alarming levels of water scarcity across the globe is a critical issue warranting urgent address. The present study aims to bring to light the perception of farmers regarding water conservation and management practices from the selected five districts of the Haryana region of India. By analyzing the responses of 125 farmers, collected through a self-administered questionnaire, the impact of socio-demographic factors, current irrigation system, and cost-benefit perception of the farmers was studied on water conservation and management practices. Using ordinal regression analysis, the study revealed that the cost-benefit perception of the farmers, viz. willingness to pay an additional price for canal water and an increase in the availability of water due to canal lining, are the major factors responsible for undertaking conservation and sustainability measures. Further, socio-demographic variables such as age and education also influence water conservation behavior. The study recommends vital policy reforms and initiatives for efficient water use and management to resolve the grave concern of scarcity of usable water. The present study is unique in its suggestion of a comprehensive water conservation and management framework.
Show more [+] Less [-]Moss Bags as Active Biomonitors of Air Pollution: Current State of Understanding, Applications and Concerns
2024
Chaudhuri, Sriroop | Roy, Mimi
Dual concerns involving the rise in airborne pollutant levels and bulging need to protect-preserve human health have propelled the search for innovative means for air quality monitoring to aid in evidence-based decision-making (pollution prevention-mitigation). In this regard, moss bags have gathered a great deal of attention as active biomonitors. In this reflective discourse, we systematically review the world literature to present a bird’s eye view of moss bag applications and advances while highlighting potential concerns. We begin with a brief note on mosses as biomonitors, highlighting the advantages of moss bags over the passive technique (native moss), other living organisms (lichens, vascular plants), and instrument-based measurements. A major strand of moss bag research involves urban ecosystem sustainability studies (e.g., street tunnels and canyons, parks), while others include event-specific monitoring and change detection (e.g., SARS-CoV-2 Lockdown), indoor-outdoor air quality assessment, and change detection in land use patterns. Recent advances include biomagnetic studies, radioisotopic investigations, and mobile applications. Efforts are currently underway to couple moss bag results with a suite of indicators [e.g., relative accumulation factor (RAF), contamination factor (CF), pollution load index (PLI), enrichment factor (EF)] and spatially map the results for holistic appraisal of environmental quality (hot spot detection). However, while moss bag innovations and applications continue to grow over time, we point to fundamental concerns/uncertainties (e.g., lack of concordance in operational procedures and parameterization, ideal species selection, moss vitality) that still need to be addressed by targeted case studies, before the moss results could be considered in regulatory interventions.
Show more [+] Less [-]Coal Mining and MSME: Is it Mutually Beneficial?
2024
Bintariningtyas, S. | Mulyaningsih, T. | Purwaningsih, Y.
The existence of a coal mining company in the vicinity of the community is something to be feared related to environmental damage due to coal mining. On the other hand, coal mining can have a positive impact on the economy of communities around the mine through corporate social responsibility programs. The problem in this research is that MSMEs need help to improve their performance. Therefore, this research aims to examine how the role of mining companies through corporate social responsibility (CSR) programs can contribute to the development of MSMEs in communities around mining areas. The company provides promotional assistance, funding, and capacity building. This research conducted surveys and interviews with respondents, namely MSMEs, around mining locations. The findings show that corporate social responsibility programs in coal mining companies have a positive impact on empowering MSMEs in communities around the mine. By providing training and promotion facilities to MSMEs, mining companies can also improve MSME performance compared to providing access to financial assistance programs. The company not only takes advantage of mining and focuses on its environmental impact but also the company’s role in empowering MSMEs.
Show more [+] Less [-]Temperature-related Saccharification of Delignified Sawdust Materials from the Lagos Lagoon in Nigeria
2024
Seeletse, J. B. M. | Ndukwe, N. A. | Wyk, J. P. H. Van
Sawdust, a product of the forest industry is mostly left untreated as solid waste. This phenomenon is well observed along the Lagos Lagoon in Nigeria where hundreds of trees are cut daily by sawmills to deliver wood for mainly the furniture industry. Different types of trees are utilized in this manner and the massive amounts of sawdust produced as a result of these activities are polluting the environment causing health risks for humans and animals. Cellulose, a glucose bio-polymer is a major structural component of sawdust and could be developed as a renewable energy resource should the cellulose be degraded into glucose, a fermentable sugar. This saccharification was done with Aspergillus niger cellulase and to make the cellulose more susceptible for cellulase action the sawdust was delignified with hydrogen peroxide. Both delignified and non-delignified sawdust were treated with the cellulase enzyme at incubation temperatures of 30°C, 40°C, 50°C, and 60°C. Delignification proved to be effective as an increased amount of sugar was released from all delignified sawdust materials relative to the non-delignified materials when saccharified with A. niger cellulase. Most of the materials were degraded at an incubation temperature of 40°C and 50°C and the highest percentage saccharification of 58% was obtained during the degradation of delignifed cellulose from the tree, Ricindendron heudelotti
Show more [+] Less [-]Assessment of Continuous Growth of Glacial Lakes in the Teesta River Basin Using Semi-Automated Geospatial Approach
2024
Shukla, A. K. | Ahmad, I. | Jain, S. K. | Verma, M. K.
Global warming is one of the primary causes contributing to melting glaciers and shrinking of glaciers moth. Because of the glacier retreat, more lakes increase the risk of flooding in people’s homes and lives. Several studies on the surging glaciers have been conducted by researchers using various techniques, as well as with the aid of multiple models like the Normalized Differential Water Index (NDWI). The Number of glacial lakes is increasing in the Himalayan region due to climate change (rise of the temperature). Some glacial lakes are potentially dangerous so monitoring is very necessary. It is necessary to evaluate such vulnerable lakes. Therefore, current work is carried out to identify such glacial lakes present in the Teesta River Basin (Eastern Himalaya). Spatiotemporal Landsat data for the last four decades at intervals of ten years from 1990 to 2020 has been considered which was cloud-free and spatial resolution of 30 meters. The dataset mentioned above was used for lake identification and delineation. The findings indicate the presence of lakes with respective areas of 275 (18.90 km2), 337 (24.92 km2), 295 (22.96 km2), and 419 (31.44 km2). It has also been observed that the growth rate is increasing with approximate water spread from 1990 to 2000 (+129%), 2000 to 2010 (+106%), and 2010 to 2020 (+136%). The present study aimed to identify such glacial lakes based on their water spreading area, which is an essential step followed in the study of GLOF (Glacial Lake Outburst Flood) as it will be helpful in the identification of hazardous lakes. In that study, we found that eleven glacial lakes are in the potentially dangerous category situated in the upper Teesta Basin due to the presence of glaciers, which gives a clear reason for the time-to-time assessment of such lakes. By the conducted study it has been observed that the number of glacial lakes has increased, due to which water spread has also increased in the area. It can also be demonstrated that GIS (Geographical Information System), along with remote sensing, is one of the best tools for assessing and monitoring such change detection and differentiation of hazardous glacial lakes in the cryosphere, along with the supporting data.
Show more [+] Less [-]Seasonal Variability of Water Quality for Human Consumption in the Tilacancha Conduction System, Amazonas, Peru
2024
Veneros, Jaris | Ramos, Llandercita Cuchca | Goñas, Malluri | Morales, Eli | Auquiñivín-Silva, Erick | Oliva, Manuel | García, Ligia
This study evaluated the seasonal variability of water quality in the Tilacancha River, the water source that supplies Chachapoyas, and the rural communities of Levanto and San Isidro del Maino of Perú. Eighteen physical, chemical, and microbiological water parameters were evaluated at five sampling points in two seasons (rainy and dry). To determine water quality, the results obtained for the parameters evaluated were compared with the Maximum Permissible Limits (MPL) established in the Regulation on Water Quality for Human Consumption (DS Nº 031-2010-SA), approved by the Environmental Health Directorate of the Ministry of Health. In addition, a Pearson correlation was performed to estimate the correlation between the variables evaluated. The results showed that microbiological parameters exceeded the MPLs in both periods evaluated, such as the case of total coliforms (44 MPN.100 mL-1), fecal coliforms (25 MPN.100 mL-1), and E. coli (5.45 MPN.100 mL-1), these microbiological parameters reported a positive correlation with turbidity, temperature, total dissolved solids, and flow rate. In addition, aluminum (Al) and manganese (Mn) exceeded the MPL in the rainy (0.26 mg Al.L-1) and dry (1.41 mg.Mn-1.L-1) seasons, respectively. The results indicated that the water of the Tilacancha River is not suitable for human consumption. Therefore, it must be treated in drinking water treatment plants to be used as drinking water.
Show more [+] Less [-]Assessment of the Swelling Behavior of NaOH-Contaminated Red Earth in the Visakhapatnam Region of India Using X-ray Diffraction Analysis
2024
Darapu, Srikanth Satish Kumar | Vindula, Sai Kumar
Research on the impact of alkali contamination on the swelling behavior of red earth in the Visakhapatnam region has been notably limited. Therefore, this study aims to investigate the effects of alkali (NaOH) contamination on the swelling characteristics of the region’s red earth. The red earth of this region was found to be a well-graded sandy soil with 81% sand and 18% fines. X-ray diffraction studies showed that this region’s red earth mainly consists of quartz, kaolinite, and hematite. The soil is inherently non-swelling. However, the free swell tests showed considerable swell under contamination of NaOH solutions of various normalities (0.05, 0.1, 1, 2, and 4N). One-dimensional consolidation tests have shown that the swell increased with the concentration of the NaOH solution and with the duration of the interaction. Red earth exhibited 'an equilibrium swelling' of 5.6, 10, 15, 17, and 20% when contaminated with 0.05, 0.1, 1, 2, and 4N NaOH solutions, respectively. XRD studies revealed that the red earth sample contaminated with even 0.05N NaOH solution and cured for 56 days exhibited the formation of zeolites analcime and natrolite. Silicate minerals like paragonite and ussingite were also formed along with the zeolites. N-A-S-H compounds, hydrosodalites, and zeolites like super hydrated natrolite, zeolite SSZ16, and zeolite ZK-14 were formed at higher normalities of NaOH after a curing period of 56 days, which caused increased swell. The research demonstrated that the formation of zeolites resulting from the alkali contamination led to swelling in the red earth.
Show more [+] Less [-]