Refine search
Results 1-10 of 826
Enhanced losses of phosphorus in mole-tile drainage water following short-term applications of dairy effluent to pasture
2005
McDowell, R.W. | Koopmans, G.F. | Monaghan, R.M. | Smith, L.C. | Stewart, I.
Environmental and health impacts of air pollution
2008
Ashmore, M.R. | Vries, W. de | Hettelingh, J.P. | Hicks, K. | Posch, M. | Reinds, G.J. | Tonneijck, F. | Bree, L. van | Dobben, H.F. van
Biomonitoring of air pollutants with plants - Considerations for the future
2004
Temmerman, L. De | Bell, N.B. | Garrec, J.P. | Klumpp, A. | Krause, G.H.M. | Tonneijck, A.E.G.
Environmental and welfare friendly housing for pigs
2010
Aarnink, A.J.A. | Groenestein, C.M. | Ogink, N.W.M.
Two-dimensional solute transport with exponential initial concentration distribution and varying flow velocity
2019
Thakur, C.K. | Chaudhary, M. | Zee, van der, S.E.A.T.M. | Singh, M.K.
The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The flow velocity is considered temporally dependent in homogeneous media however, both spatially and temporally dependent is considered in heterogeneous porous media. First-order degradation term is taken into account to obtain a solution using Laplace Transformation Technique (LTT) for both the medium. The solute concentration distribution and breakthrough are depicted graphically. The effect of different transport parameters is studied through proposed analytical investigation. Advection-dispersion theory of contaminant mass transport in porous media is employed. Numerical solution is also obtained using Crank Nicholson method and compared with analytical result. Furthermore, accuracy of the result is discussed with root mean square error (RMSE) for both the medium. This study has developed a transport and prediction 2-D model that allows the early remediation and removal of possible pollutant in both the porous structures. The result may also be used as a preliminary predictive tool for groundwater resource and management.
Show more [+] Less [-]Greening Through Industrial Relocation in Vietnam: The Case of Ho Chi Minh City
2008
Le Van Khoa | Ho, P.P.S.
Maintaining viable earthworm populations in frequently inundated river flood plains. Does plasticity in maturation in Lumbricus rubellus promote population survival?
2004
Klok, C. | Zorn, M. | Koolhaas, J.E. | Eijsackers, H.J.P. | Gestel, C.A.M. van
A brief history of microplastics effect testing: Guidance and prospect
2025
de Ruijter, V.N. | Redondo Hasselerharm, P.E. | Koelmans, A.A.
Numerous reviews have consistently highlighted the shortcomings of studies evaluating the effects of microplastics (MP), with many of the issues identified in 2016 still relevant in 2024. Here, we summarize the current knowledge on MP effect testing, compare guidelines, and provide an overview of risk assessments conducted at both single species and community levels. We discuss standard test materials, MP characteristics, and mechanisms explaining effects. We have observed that the quality of MP effect studies is gradually improving, and knowledge on enhancing these studies is available. Recommendations include data rescaling and alignment for ecological risk assessment, with preference for using environmentally relevant MPs. A step-by-step protocol for creating polydisperse test materials is provided. Most risk assessments indicate that concentrations observed in ecosystems globally exceed the effect thresholds measured in the laboratory. However, using a higher-tier approach, no risks are expected for freshwater benthic communities at current MP exposure concentrations. Evidence on the mechanisms behind adverse effects is growing; however, more well-designed experiments are needed. A potential solution might involve comparing natural particles with MPs that are as similar in dimensions as possible, providing insight into the mechanisms of food dilution where volume is a critical determinant of toxicity.
Show more [+] Less [-]Evaluation of microplastic pollution using bee colonies : An exploration of various sampling methodologies
2024
Cortés-Corrales, Laura | Flores, Jose Javier | Rosa, Adrian | van der Steen, Jozef J.M. | Vejsnæs, Flemming | Roessink, Ivo | Martínez-Bueno, Maria Jesús | Fernández-Alba, Amadeo R.
Recent research has highlighted the potential of honeybees and bee products as biological samplers for monitoring xenobiotic pollutants. However, the effectiveness of these biological samplers in tracking microplastics (MPs) has not yet been explored. This study evaluates several methods of sampling MPs, using honeybees, pollen, and a novel in-hive passive sampler named the APITrap. The collected samples were characterized using a stereomicroscopy to count and categorise MPs by morphology, colour, and type. To chemical identification, a micro-Fourier transform-infrared (FTIR) spectroscopy was employed to determine the polymer types. The study was conducted across four consecutive surveillance programmes, in five different apiaries in Denmark. Our findings indicated that APITrap demonstrated better reproducibility, with a lower variation in results of 39%, compared to 111% for honeybee samples and 97% for pollen samples. Furthermore, the use of APITrap has no negative impact on bees and can be easily applied in successive samplings. The average number of MPs detected in the four monitoring studies ranged from 39 to 67 in the APITrap, 6 to 9 in honeybee samples, and 6 to 11 in pollen samples. Fibres were the most frequently found, accounting for an average of 91% of the total MPs detected in the APITrap, and similar values for fragments (5%) and films (4%). The MPs were predominantly coloured black, blue, green and red. Spectroscopy analysis confirmed the presence of up to five different synthetic polymers. Polyethylene terephthalate (PET) was the most common in case of fibres and similarly to polypropylene (PP), polyethylene (PE), polyacrylonitrile (PAN) and polyamide (PA) in non fibrous MPs. This study, based on citizen science and supported by beekeepers, highlights the potential of MPs to accumulate in beehives. It also shows that the APITrap provides a highly reliable and comprehensive approach for sampling in large-scale monitoring studies.
Show more [+] Less [-]Assessing ecological responses to exposure to the antibiotic sulfamethoxazole in freshwater mesocosms
2024
Schuijt, Lara M. | van Drimmelen, Chantal K.E. | Buijse, Laura L. | van Smeden, Jasper | Wu, Dailing | Boerwinkel, Marie Claire | Belgers, Dick J.M. | Matser, Arrienne M. | Roessink, Ivo | Beentjes, Kevin K. | Trimbos, Krijn B. | Smidt, Hauke | Van den Brink, Paul J.
Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 μg/L). These concentrations include mean (0.15 μg/L) and maximum detected concentrations (15 and 150 μg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 μg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 μg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.
Show more [+] Less [-]