Refine search
Results 1-4 of 4
Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet–dry and freeze–thaw cycling
2021
Yang, Kai | Wang, Xilong | Cheng, Hefa | Tao, Shu
Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet–dry (WD) and freeze–thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted.
Show more [+] Less [-]Aging of solidified/stabilized electrolytic manganese solid waste with accelerated carbonation and aging inhibition
2016
Du, Bing | Zhou, Changbo | Dan, Zhigang | Chao, Tzu-yuan | Peng, Xianjia | Liu, Jianguo | Duan, Ning
High concentrations of soluble Mn in electrolytic manganese solid waste (EMSW) in soil cause the severe contamination in China. Calcium oxide and magnesium oxide-dominated stabilizers are suitable for the solidification/stabilization (s/s) of EMSW. However, the long-term performance of s/s using those two types of stabilizer is problematic. The aim of this study was to develop an accelerated aging method to simulate the long-term natural carbonation of solidified/stabilized EMSW. The joint use of accelerated carbonation, leaching test, mineralogical analysis, and microstructural observation was applied to assess the long-term performance of the s/s EMSW system. On an accelerated carbonation test for solidified/stabilized EMSW, an increase in Mn leaching from 13.6 to 408 mg/kg and a 1.5–2.3 decrease in pH was achieved by using CaO-dominated stabilizers, while an increase in manganese (Mn) from 30 to 266 mg/kg and a decrease in pH of 0.17–0.68 was seen using MgO-dominated stabilizers. CaO+Na₃PO₄ and CaO+CaCO₃ were exceptions in that the leaching value of soluble Mn was lower after carbonation. Mineralogical analysis showed that rhodochrosite in the carbonated s/s system was generated not only from the reduction of hausmannite but also from the reversible reaction between Mn(OH)₂ and MnCO₃. Carbonation destroyed the tight particle structure resulting in a porous and loose structure. As for s/s EMSW treated by MgO-dominated stabilizers, carbonation affected the agglomerating structure and mineralogical composition by increasing magnesium (Mg) migration, thereby forming hydromagnesite that had weak binding ability and a nested porous shape. Therefore, carbonation by itself does not cause deterioration to s/s products of the soluble Mn but does have significant effects on the microstructure and mineralogical composition. It is recommended to add Na₃PO₄ or CaCO₃ into a single CaO stabilized EMSW system to prevent aging of the system, allow formation of Mn phosphate precipitates, and improve the absorption and oxidation of soluble Mn(II).
Show more [+] Less [-]Studies on the effects of storage stability of bio-oil obtained from pyrolysis of Calophyllum inophyllum deoiled seed cake on the performance and emission characteristics of a direct-injection diesel engine
2018
Sakthivel, R. (Rajamohan) | Kasimani, Ramesh
The highly unbalanced nature of bio-oil composition poses a serious threat in terms of storage and utilization of bio-oil as a viable fuel in engines. So it becomes inevitable to study the variations in physicochemical properties of the bio-oil during storage to value its chemical instability, for designing stabilization methodologies. The present study aims to investigate the effects of storage stability of bio-oil extracted from pyrolyzing Calophyllum inophyllum (CI) deoiled seed cake on the engine operating characteristics. The bio-oil is produced in a fixed bed reactor at 500 °C under the constant heating rate of 30 °C/min. All the stability analysis methods involve an accelerated aging procedure based on standards established by ASTM (D5304 and E2009) and European standard (EN 14112). Gas chromatography-mass spectrometry was employed to analytically characterize the unaged and aged bio-oil samples. The results clearly depict that stabilizing Calophyllum inophyllum bio-oil with 10% (w/w) methanol improved its stability than that of the unstabilized sample thereby reducing the aging rate of bio-oil to 0.04 and 0.13 cst/h for thermal and oxidative aging respectively. Engine testing of the bio-oil sample revealed that aged bio-oil samples deteriorated engine performance and increased emission levels at the exhaust. The oxidatively aged sample showed the lowest BTE (24.41%), the highest BSEC (20.14 MJ/kWh), CO (1.51%), HC (132 ppm), NOx (1098 ppm) and smoke opacity (34.8%).
Show more [+] Less [-]Hematological indicators in pygmy wood mouse Apodemus uralensis (Muridae, Rodentia) populations as markers of the environmental radiation exposure: East Urals radioactive trace (Russia)
2018
Orekhova, Natal’yaA.
The hematological effects of chronic radiation exposure in males of the pygmy wood mouse (Apodemus uralensis Pall., 1811) from the East Urals radioactive trace (EURT) area were assessed, taking into account population abundance and reproductive status (immature, ripening, and mature yearlings). For this purpose, we analyzed the morpho-functional characteristics of erythrocytes (red cell indices [MCV, MCH, MCHC], red cell count, activity of antioxidant enzymes [GSH-Px, CAT], lipid peroxidation, glycolysis, osmotic resistance, methaemoglobin content) and blood plasma components (free hemoglobin, total lipids, total cholesterol, and glucose) in the background territory and the EURT area; these areas have a density of soil contamination with ⁹⁰Sr of 12,851 and 198 kBq × m⁻², respectively (four and two order of magnitude higher than the background value). The data indicate the “hyperfunctional” state of the erythrocyte, aimed at activation of the gas transport function of blood in the radioactive environment. This, as a consequence, determines the insufficiency of energy supply of the cell defense system necessary to maintain the structural integrity of the membrane. Intensification of membrane lipid peroxidation, reduction of osmotic resistance and GSH-Px activity in red cells, an increase in the degree of intravascular hemolysis, and tendency towards erythropenia indicate the processes of accelerated aging of erythrocytes and their more pronounced destruction in the circulatory bed. The level of the hematological response increased with increasing radiation burden and was more pronounced with a large population size. The interaction effect of “overpopulation” and “radioactive pollution” was observed to a lesser degree for ripening males, and was very small for sexually mature animals. Immature males from the EURT head part with internal whole-body radiation doses of 0.0045–0.35 mGy/day can be considered as the most sensitive group to the factors synergy, including radiation damage and overabundance population.
Show more [+] Less [-]