Refine search
Results 1-10 of 534
A long-term field experiment confirms the necessity of improving biowaste sorting to decrease coarse microplastic inputs in compost amended soils
2022
Colombini, Gabin | Rumpel, Cornelia | Houot, Sabine | Biron, Philippe | Dignac, Marie-France | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANR-11-INBS-0001,ANAEE-FR,ANAEE-Services(2011)
International audience | Microplastic (MP) input into agroecosystems is of particular concern as their sources are diverse (mulching films, biosolid application, wastewater irrigation, flooding, atmospheric input, road runoff). Compost application, which is needed to sustain soil ecosystem services in the context of a circular economy, may be a source of microplastics. The aim of this study was to evaluate how different composts derived from urban wastes impact the nature and quantity of coarse (2-5 mm) microplastics (CMP) in soils, using a long-term field experiment in France. Composts resulting from different levels of urban waste sorting were investigated. Our approach included the isolation of microplastics from composts and amended soils followed by their characterization using pyrolysis GC/MS spectrometry. We found that coarse microplastic concentrations varied from 26.9 to 417 kg per hectare depending on the compost type, after 22 years of bi-annual application. These values may be higher than for conventional agricultural practices, as application rate was twice as high as for normal practices. Composts made from municipal solid waste were by far the organic amendments leading to the highest quantity of plastic particles in soils, emphasizing the urgent need for limiting plastic use in packaging and for improving household biowaste sorting. Our results strongly suggest that standards regulating organic matter amendment application should take microplastics into account in order to prevent contamination of (agricultural) soils. Moreover, although no impacts on the soil bio-physico-chemical parameters has been noted so far. However, given the huge microplastic inputs, there is an urgent need to better evaluate their effect on soil functioning.
Show more [+] Less [-]Prediction of N2O emission from local information with Random Forest
2013
Philibert, Aurore, A. | Loyce, Chantal | Makowski, David | Agronomie ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Nitrous oxide is a potent greenhouse gas, with a global warming potential 298 times greater than that of CO2. In agricultural soils, N2O emissions are influenced by a large number of environmental characteristics and crop management techniques that are not systematically reported in experiments. Random Forest (RF) is a machine learning method that can handle missing data and ranks input variables on the basis of their importance. We aimed to predict N2O emission on the basis of local information, to rank environmental and crop management variables according to their influence on N2O emission, and to compare the performances of RI: with several regression models. RF outperformed the regression models for predictive purposes, and this approach led to the identification of three important input variables: N fertilization, type of crop, and experiment duration. This method could be used in the future for prediction of N2O emissions from local information. (c) 2013 Elsevier Ltd. All rights reserved.
Show more [+] Less [-]Coarse microplastic accumulation patterns in agricultural soils during two decades of different urban composts application
2024
Colombini, Gabin | Fenouci, Fatima | Rumpel, Cornelia | Houot, Sabine | Biron, Philippe | Felbacq, Axel | Dignac, Marie-France | Laboratoire Sols et Environnement (LSE) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Plastisol funded by ADEME (GRAINE 2019): Fate of microplastics in organic wastetreatment plants - what impact on soil quality and health? | ANR-21-CE34-0017,e-DIP,Dynamique environnementale et impacts des cocktails de contaminants provenant des plastiques dans les écosystèmes terrestres(2021) | ANR-11-INBS-0001,ANAEE-FR,ANAEE-Services(2011)
International audience | Plastic pollution, a global threat to environmental and human health, is now ubiquitous in the environment, including agricultural soils receiving urban compost amendments. Yet, the accumulation pattern of microplastics in soils are still to be disentangled, with regards to their sources and/or their physical properties such as morphotypes. The aim of this study was to identify the accumulation patterns of coarse microplastics resulting from the long-term amendment of soil with urban waste composts. To this end, we used a field experiment receiving three different urban composts derived from municipal solid waste, biowaste, and a mixture of sewage sludge and green waste. We isolated 1417 coarse microplastic particles from a 21-year archive of soil and compost samples, using density fractionation followed by oxidation, and used Py-GC/MS for polymer identification. Different compost types led to different coarse microplastics accumulation levels. The accumulation pattern showed increasing CMP contents in soils over time. After 21 years of experiment, the calculated number of CMP was in accordance with the estimated values for all three compost types but it was not the case for the CMP mass. No difference of evolution pattern was found between films and fragments. We proposed that biotic transport or abiotic weathering and fragmentation could explain such differences in CMP evolution pattern.
Show more [+] Less [-]Nitrogen input leads to the differential accumulation of polycyclic aromatic hydrocarbons in the low- and high-density fractions in sewage-irrigated farmland soil
2022
Hui, Kunlong | Cui, Yini | Tan, Wenbing
Because of a shortage of water resources, sewage irrigation has become a popular management tool for farmland soil in arid areas of China; however, this has led to the accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil. Soil is an important component of ecosystems, and nitrogen is an important nutrient required for plant growth. Nitrogen input can alter the physical, chemical, and biological processes in soil and thus lead to changes in soil organic matter and organic pollutants. However, whether these changes affect the accumulation of PAHs and whether such accumulation differs in the low-density fraction (LF) and high-density fraction (HF) of soil remains unclear. In this study, the response of PAHs in soil to nitrogen input (0, 100, 200, and 300 kg N ha⁻¹ yr⁻¹, respectively), including differences in LF and HF, were investigated through field experiments in a typical sewage-irrigated area. The results showed that nitrogen input could increase the concentrations of PAHs in soil from (7.6 ± 1.1) × 10³ to (10.4 ± 0.6) × 10³ μg kg⁻¹ and lead to striking differences between the LF ((5.06 ± 0.75) × 10³ to (1.89 ± 0.18) × 10³ μg kg⁻¹) and HF ((2.54 ± 0.36) × 10³ to (8.54 ± 0.44) × 10³ μg kg⁻¹). Given the significant increase in global nitrogen input, our findings have implications for the optimization and management of agricultural activities in sewage irrigation areas, such as soil investigation before fertilization, the use of soil improvers, and the improvement of soil planting measures.
Show more [+] Less [-]Microplastics in arid soils: Impact of different cropping systems (Altay, Xinjiang)
2022
Liu, Hao | Wang, Xiyuan | Shi, Qingdong | Liu, Yuying | Lei, Haifeng | Chen, Yutong
Although microplastic pollution in the soil environment is currently an important research topic, few studies have focused on farmland soil in arid regions. This study investigated the abundances, sizes, polymer compositions, and forms of microplastics across nine agricultural plots cultivated with maize, sunflower, and potato (three of each crop) plants to determine the influences of different cropping characteristics and agricultural practices. The study area was within the arid region of the Ulungur River basin in Qinghe County, Altay, Xinjiang, China. The main forms of microplastics were fragments and fibers, and polyethylene was the dominant polymer (91.6%). The microplastic abundance ranged from 11 347 items/kgdw to 78 061 items/kgdw (mean of 52 081.7 items/kgdw). The abundance and proportion of microplastics with a diameter of <0.2 mm were significantly higher in the sunflower and maize plots (i.e., tall crops) than in the potato plots (i.e., short crops) (p < 0.05). This is due to straw residues affecting the migration and recovery of the mulch. The abundance and fragmentation of microplastics were significantly higher in the sunflower and maize plots where plastic mulch was extensively used because these tall crops anchored the mulch near their stem–root systems. The mulch was then slowly aged (e.g., via wind erosion) before being fragmented due to agricultural practices (e.g., mechanical plowing and residue retention). Although microplastics sourced from mulch are probably immobilized by straw residues in the short term, fragile and easily broken pieces of mulch are eventually released into the soil due to agricultural practices. The findings suggest that different cropping characteristics can affect the abundance and fragmentation of microplastics in agricultural soils, even within the same region, and thus the level and type of microplastic pollution. Traditional plastic mulch should be replaced with biodegradable mulch to reduce microplastic pollution in agricultural fields.
Show more [+] Less [-]The relationships between soil physicochemical properties, bacterial communities and polycyclic aromatic hydrocarbon concentrations in soils proximal to coking plants
2022
Du, Jingqi | Liu, Jinxian | Jia, Tong | Chai, Baofeng
Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the major channel for their decontamination from different environments. Aerobic and anaerobic biodegradations of PAHs in batch reactors with single or multiple bacterial strains have been intensively studied, but the cooperative mechanism of functional PAH-degrading populations at the community level under field conditions remains to be explored. We determined the composition of PAH-degrading populations in the bacterial community and PAHs in farmland and wasteland soils contaminated by coking plants using high-throughput sequencing and high-performance liquid chromatography (HPLC), respectively. The results indicated that the PAH content of farmland was significantly lower than that of wasteland, which was attributed to the lower content of low molecular weight (LMW) PAHs and benzo [k]fluoranthene. The soil physicochemical properties were significantly different between farmland and wasteland. The naphthalene content was related to the soil organic carbon (SOC) and pH, while phenanthrene was related to the nitrate nitrogen (NO₃⁻-N) and water content (WC). The pH, nitrite (NO₂⁻-N), SOC, NO₃⁻-N and WC were correlated with the content of high molecular weight (HMW) PAHs and total PAHs. The relative abundances of the phyla Actinobacteria, Chloroflexi, Acidobacteria, and Firmicutes and the genera Nocardioides, Bacillus, Lysobacter, Mycobacterium, Streptomyces, and Steroidobacter in farmland soil were higher than those in wasteland soil. The soil physicochemical characteristics of farmland increased the diversities of the PAH degrader and total bacterial communities, which were significantly negatively related to the total PAHs and LMW PAHs. Subsequently, the connectivity and complexity of the network in farmland were lower than those in wasteland, while the module containing a module hub capable of degrading PAHs was identified in the network of farmland soil. Structural equation modelling (SEM) analysis showed that the soil characteristics and optimized abundance and diversity of the bacterial community in farmland were beneficial for the dissipation efficiency of PAHs.
Show more [+] Less [-]Soil oxygen depletion and corresponding nitrous oxide production at hot moments in an agricultural soil
2022
Song, Xiaotong | Wei, Huanhuan | Rees, R. M. (Robert M.) | Ju, Xiaotang
Hot moments of nitrous oxide (N₂O) emissions induced by interactions between weather and management make a major contribution to annual N₂O budgets in agricultural soils. The causes of N₂O production during hot moments are not well understood under field conditions, but emerging evidence suggests that short-term fluctuations in soil oxygen (O₂) concentration can be critically important. We conducted high time-resolution field observations of O₂ and N₂O concentrations during hot moments in a dryland agricultural soil in Northern China. Three typical management and weather events, including irrigation (Irr.), fertilization coupled with irrigation (Fer.+Irr.) or with extreme precipitation (Fer.+Pre.), were observed. Soil O₂ and N₂O concentrations were measured hourly for 24 h immediately following events and measured daily for at least one week before and after the events. Soil moisture, temperature, and mineral N were simultaneously measured. Soil O₂ concentrations decreased rapidly within 4 h following irrigation in both the Irr. and Fer.+Irr. events. In the Fer.+Pre. event, soil O₂ depletion did not occur immediately following fertilization but began following subsequent continuous rainfall. The soil O₂ concentration dropped to as low as 0.2% (with the highest soil N₂O concentration of up to 180 ppmv) following the Fer.+Pre. event, but only fell to 11.7% and 13.6% after the Fer.+Irr. and Irr. events, which were associated with soil N₂O concentrations of 27 ppmv and 3 ppmv, respectively. During the hot moments of all three events, soil N₂O concentrations were negatively correlated with soil O₂ concentrations (r = −0.5, P < 0.01), showing a quadratic increase as soil O₂ concentrations declined. Our results provide new understanding of the rapid short response of N₂O production to O₂ dynamics driven by changes in soil environmental factors during hot moments. Such understanding helps improve soil management to avoid transitory O₂ depletion and reduce the risk of N₂O production.
Show more [+] Less [-]Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture
2022
Ali, Sajad | Tyagi, Anshika | Mushtaq, Muntazir | Al-Mahmoudi, Henda | Bae, Hanhong
Heavy metal toxicity has become an impediment to agricultural productivity, which presents major human health concerns in terms of food safety. Among them, arsenic (As) a non-essential heavy metal has gained worldwide attention because of its noxious effects on agriculture and public health. The increasing rate of global warming and anthropogenic activities have promptly exacerbated As levels in the agricultural soil, thereby causing adverse effects to crop genetic and phenotypic traits and rendering them vulnerable to other stresses. Conventional breeding and transgenic approaches have been widely adapted for producing heavy metal resilient crops; however, they are time-consuming and labor-intensive. Hence, finding new mitigation strategies for As toxicity would be a game-changer for sustainable agriculture. One such promising approach is harnessing plant microbiome in the era of ‘omics’ which is gaining prominence in recent years. The use of plant microbiome and their cocktails to combat As metal toxicity has gained widespread attention, because of their ability to metabolize toxic elements and offer an array of perquisites to host plants such as increased nutrient availability, stress resilience, soil fertility, and yield. A comprehensive understanding of below-ground plant-microbiome interactions and their underlying molecular mechanisms in exhibiting resilience towards As toxicity will help in identifying elite microbial communities for As mitigation. In this review, we have discussed the effect of As, their accumulation, transportation, signaling, and detoxification in plants. We have also discussed the role of the plant microbiome in mitigating As toxicity which has become an intriguing research frontier in phytoremediation. This review also provides insights on the advancements in constructing the beneficial synthetic microbial communities (SynComs) using microbiome engineering that will facilitate the development of the most advanced As remedial tool kit in sustainable agriculture.
Show more [+] Less [-]Bioremediation of hazardous pollutants from agricultural soils: A sustainable approach for waste management towards urban sustainability
2022
Yaashikaa, P.R. | Kumar, P Senthil
Soil contamination is perhaps the most hazardous issue all over the world; these emerging pollutants ought to be treated to confirm the safety of our living environment. Fast industrialization and anthropogenic exercises have resulted in different ecological contamination and caused serious dangerous health effects to humans and animals. Agro wastes are exceptionally directed because of their high biodegradability. Effluents from the agro-industry are a possibly high environmental risk that requires suitable, low-cost, and extensive treatment. Soil treatment using a bioremediation method is considered an eco-accommodating and reasonable strategy for removing toxic pollutants from agricultural fields. The present review was led to survey bioremediation treatability of agro soil by microbes, decide functional consequences for microbial performance and assess potential systems to diminish over potentials. The presence of hazardous pollutants in agricultural soil and sources, and toxic health effects on humans has been addressed in this review. The present review emphasizes an outline of bioremediation for the effective removal of toxic contaminants in the agro field. In addition, factors influencing recent advancements in the bioremediation process have been discussed. The review further highlights the roles and mechanisms of micro-organisms in the bioremediation of agricultural fields.
Show more [+] Less [-]Is mulch film itself the primary source of meso- and microplastics in the mulching cultivated soil? A preliminary field study with econometric methods
2022
Xu, Li | Xu, Xiangbo | Li, Chang | Li, Jing | Sun, Mingxing | Zhang, Linxiu
There has been an increasing interest in the pollution caused by meso- and microplastics (MMPs) in terrestrial ecosystems. Mulch film was once considered to be the most important source of MMPs in the mulching cultivated soil. However, the academic community has not given sufficient scientific evidence. In this study, stratified random sampling method was used to selectively interview households in Hebei province, China (400 households, 20 villages, 5 counties). Finally, household characteristics and mulch film use behavior of 41 households were collected, and corresponding soil samples were sampled. The results showed that 1) the abundance of MMPs was 29.3 ± 33.1 items·kg⁻¹ (DW) and the particle size of MMPs was 2.95 × 10³±1.75 × 10³ μm, and the proportion of MMPs derived from Polyethylene (PE) was only 18.8%; 2) the mass of MMPs was 2.90 ± 3.72 mg kg⁻¹ (DW) and the proportion of PE MMPs was 43.75%, which has the highest mass percentage; 3) After controlling the endogenous and dummy variables, the use history of mulch film (HistMF) was found to be positively correlated to the abundance of MMPs and inversely correlated to the particle size, but nor with the mass of MMPs; 4) Regarding the heterogeneous characteristics of MMPs, including particle size, color, shape, and type, the findings found the absence of a significant correlation between HistMF and the abundance and mass of PE. In summary, mulch-derived MMPs are not the primary source of MMPs in the mulching cultivated soil in terms of abundance but probably be in terms of mass.
Show more [+] Less [-]