Refine search
Results 1-2 of 2
Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry
2022
Duan, Chengjiao | Wang, Yuhan | Wang, Qiang | Ju, Wenliang | Zhang, Zhiqin | Cui, Yongxing | Beiyuan, Jingzi | Fan, Qiaohui | Wei, Shiyong | Li, Shiqing | Fang, Linchuan
Slow nutrient turnover and destructed soil function were the main factors causing low efficiency in phytoremediation of heavy metal (HM)-contaminated soil. Soil ecoenzymatic stoichiometry can reflect the ability of soil microorganisms to acquire energy and nutrients, and drive nutrient cycling and carbon (C) decomposition in HM-contaminated soil. Therefore, for the first time, we used the enzymatic stoichiometry modeling to examine the microbial nutrient limitation in rhizospheric and bulk soil of different plants (Medicago sativa, Halogeton arachnoideus and Agropyron cristatum) near the Baiyin Copper Mine. Results showed that the main pollutants in this area were Cu, Zn, Cd, and Pb, while Cd and Zn have the greatest contribution according to the analysis of pollution load index (PLI). The activities of soil C-, nitrogen (N)-, and phosphorus (P)-acquiring enzymes in the rhizosphere of plants were significantly greater than that in bulk soil. Moreover, microbial C and P limitations were observed in all plant treatments, while the lower limitation was generally in the rhizosphere compared to bulk soil. The HM stress significantly increased microbial C limitation and decreased microbial P limitation, especially in the rhizospheric soil. The partial least squares path modeling (PLS-PM) further indicated that HM concentration has the greatest effects on microbial P limitation (−0.64). In addition, the highest enzyme activities and the lowest P limitation were observed in the rhizospheric and bulk soil of M. sativa, thereby implying that soil microbial communities under the remediation of M. sativa were steadier and more efficient in terms of their metabolism. These findings are important for the elucidation of the nutrient cycling and microbial metabolism of rhizosphere under phytoremediation, and provide guidance for the restoration of HM-contaminated soil.
Show more [+] Less [-]Effects of simulated N deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan plateau
2019
Shen, Hao | Dong, Shikui | Li, Shuai | Xiao, Jiannan | Han, Yuhui | Yang, Mingyue | Zhang, Jing | Gao, Xiaoxia | Xu, Yudan | Li, Yu | Zhi, Yangliu | Liu, Shiliang | Dong, Quanming | Zhou, Huakun | Yeomans, Jane C.
Nitrogen (N) deposition may alter physiological process of plants in grassland ecosystem. However, little is known about the response mechanism of individual plants in alpine regions to N deposition. We conducted a field experiment, and three treatments including 0 kg Nha⁻¹year⁻¹ (CK), 8 kgNha⁻¹year⁻¹ (Low N), and 72 kg N ha⁻¹ year⁻¹ (High N) were established to simulate N deposition in alpine meadow of Qinghai-Tibetan plateau. Our objectives were to determine the influence of N deposition on photosynthesis of different functional types of herbage species in alpine meadow, and finally characterize the links of plant productivity and photosynthesis with soil nutrients. The results showed that responses of alpine plants were species-specific under N deposition. Compared with grass species Agropyron cristatum and forb species Thalictrum aquilegifolium, the sedge species Carex melanantha was much more sensitive to N deposition; a lower N load (8 kgNha⁻¹year⁻¹) can cause a negative effect on its photosynthesis and productivity. Additionally, N deposition can promote plant N uptake and significantly decreased the C (carbon)/N (nitrogen) ratio. Compared with CK and low N deposition, high N deposition inhibited the photosynthesis and growth of the forb species Thalictrum aquilegifolium and sedge species Carex melanantha. In all three functional types of herbage species, the grass species A. cristatum tended to show a much higher photosynthetic capacity and better growth potential; thus, suggesting that grass species A. cristatum will be a more adaptative alpine plants under N deposition. Our findings suggested that plant photosynthetic responses to N deposition were species-specific, low N deposition was not beneficial for all the herbage species, and N deposition may change plant composition by the differential photosynthetic responses among species in alpine grassland. Plant composition shift to grass-dorminant in alpine regions might be attributed to a much higher photosynthetic potential and N use efficiency of grass species.
Show more [+] Less [-]