Refine search
Results 1-3 of 3
Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables: An important step in terrestrial food chain analysis
2009
Temmerman, Ludwig de | Waegeneers, Nadia | Claeys, Natacha | Roekens, Edward
A biomonitoring network with leafy vegetables was established near a chlor-alkali plant in order to compare the accumulation of mercury to the atmospheric total gaseous mercury (TGM) concentration. Based on data obtained in the reference area the 'normal' mercury concentration in vegetables is between 0.6 and 5.4 μg kg⁻¹ FW. The effect detection limits (EDLs) are between 1.2 and 11.0 μg kg⁻¹ FW and the biological detection limits (BDLs), the lowest [TGM] that can be detected significantly, are between 3 and 4 ng m⁻³. The accumulation rate is lowest for lettuce and high for curly kale that proved to be an excellent accumulator and as such it is very useful for biomonitoring purposes. A comparison made in the 1980s between biomonitoring results with grass and the mercury concentration in leafy vegetables from private gardens nearby proved to be valid when applied to the current biomonitoring results with vegetables. Leafy vegetables are an important component in the transfer of atmospheric mercury through the terrestrial food chain.
Show more [+] Less [-]Oil and gas industrial chemicals' cytotoxicity studied by allium test
1997
Zoldoš, Vlatka | Vidaković-Cifrek, Željka | Tomić, Mihovil | Papeš, Dražena
Allium test has already been used to determine cytotoxicity of waste drilling fluids. In the present work the cytotoxicity of four pure chemicals (Defoamex, Idthin 400, Magco Thin and Slick Pipe) was investigated. Those chemicals are components of drilling fluids, therefore, they are usually constituents of oil and gas industry waste waters. The tested chemicals were prepared in 1:9 dilution and cytotoxic effects on root-tip meristem ofAllium ascalonicum were analysed after 24-, 48- and 72-hour-treatments. All samples showed cytotoxicity which was proved by cytogenetic parameters such as inhibition of mitotic activity and increase of mitotic abnormalities and chromosomal aberrations in comparison with the control. Almost all mitotic abnormalities induced by four chemicals tested were the result of disturbed spindle mechanisms accompanied with stickiness. Slick Pipe revealed the most prominent mitodepressive effect and induced a high number of abnormalities. It caused a significant decrease of mitotic activity and increase of mitotic abnormalities after all three treatment durations, while chemicals Defoamex and Magco Thin showed a significant decrease of mitotic activity only after 72-hour-treatment. Chemicals Defoamex, Idthin 400 and Magco Thin revealed a significant increase of mitotic abnormalities after 48- and 72-hour-treatments.
Show more [+] Less [-]Arbuscular Mycorrhizal Fungal Infectivity in Two Soils as Affected by Atmospheric Phenanthrene Pollution
2012
Desalme, Dorine | Chiapusio, Geneviève | Bernard, Nadine | Gilbert, Daniel | Toussaint, Marie-Laure | Binet, Philippe
Arbuscular mycorrhizal fungi (AMF) hold a crucial role in ecosystems because they are involved in nutrient cycling between soil and plants. This work aimed at evaluating the impacts that atmospheric pollution by polycyclic aromatic hydrocarbons may have on infectivity of indigenous AMF in soils. Two agricultural soils (Maconcourt, La Bouzule) were exposed for 2 weeks to ambient air (control, C) or to atmospheric phenanthrene (PHE) deposition (180 μg m−3 air). After exposure, soils were divided into a top (0–1 cm) and a bottom (1–15 cm) layer fraction. AMF infectivities of soils were determined after 2 weeks of atmospheric exposition using leek (Allium porum) as bioassay plant. Atmospheric PHE was mainly recovered in the top layer of soil (500–1,350 μg kg−1) of both soils and did not readily diffuse into the depth. Atmospheric contamination led to decreases in AMF infectivities of the top layer in both soils and affected the growth of leeks. Our results not only report evidence that infectivity of indigenous AMF is sensitive to PHE in soils but also emphasize that AMF are primary affected by the soil layer regardless to the pollution level.
Show more [+] Less [-]