Refine search
Results 41-50 of 675
Characterizing the influence of highways on springtime NO2 and NH3 concentrations in regional forest monitoring plots Full text
2014
Watmough, Shaun A. | McDonough, Andrew M. | Raney, Shanel M.
Highways are major sources of nitrogen dioxide (NO2) and ammonia (NH3). In this study, springtime NO2 and NH3 concentrations were measured at 17 Ontario Forest Biomonitoring Network (OFBN) plots using passive samplers. Average springtime NO2 concentrations were between 1.3 μg m−3 and 27 μg m−3, and NH3 concentrations were between 0.2 μg m−3 and 1.7 μg m−3, although concentrations measured in May (before leaf out) were typically twice as high as values recorded in June. Average NO2 concentrations, and to a lesser extent NH3, could be predicted by road density at all radii (around the plot) tested (500 m, 1000 m, 1500 m). Springtime NO2 concentrations were predicted for a further 50 OFBN sites. Normalized plant/lichen N concentrations were positively correlated with estimated springtime NO2 and NH3 concentrations. Epiphytic foliose lichen richness decreased with increasing NO2 and NH3, but vascular plant richness was positively related to estimated springtime NO2 and NH3.
Show more [+] Less [-]Tools for determining critical levels of atmospheric ammonia under the influence of multiple disturbances Full text
2014
Pinho, P. | Llop, E. | Ribeiro, M.C. | Cruz, C. | Soares, A. | Pereira, M.J. | Branquinho, C.
Critical levels (CLEs) of atmospheric ammonia based on biodiversity changes have been mostly calculated using small-scale single-source approaches, to avoid interference by other factors, which also influence biodiversity. Thus, it is questionable whether these CLEs are valid at larger spatial scales, in a multi- disturbances context. To test so, we sampled lichen diversity and ammonia at 80 sites across a region with a complex land-cover including industrial and urban areas. At a regional scale, confounding factors such as industrial pollutants prevailed, masking the CLEs. We propose and use a new tool to calculate CLEs by stratifying ammonia concentrations into classes, and focusing on the highest diversity values. Based on the significant correlations between ammonia and biodiversity, we found the CLE of ammonia for Mediterranean evergreen woodlands to be 0.69 μg m−3, below the previously accepted value of 1.9 μg m−3, and below the currently accepted pan-European CLE of 1.0 μg m−3.
Show more [+] Less [-]Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia Full text
2013
Karlsson, Per Erik | Ferm, Martin | Tømmervik, Hans | Hole, Lars R. | Pihl Karlsson, Gunilla | Ruoho-Airola, Tuija | Aas, Wenche | Hellsten, Sofie | Akselsson, Cecilia | Mikkelsen, Teis Nørgaard | Nihlgård, Bengt
High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition of ammonium were detected at one low altitude site and several high altitude sites in north Sweden. The occurrence of the high ammonium in throughfall differed between the summer months 2006, most likely related to the timing of precipitation events. The ammonia dry deposition may have contributed to unusual visible injuries on the tree vegetation in northern Fennoscandia that occurred during 2006, in combination with high ozone concentrations. It is concluded that long-range transport of ammonium from large-scale biomass burning may contribute substantially to the nitrogen load at northern latitudes.
Show more [+] Less [-]Agricultural ammonia emissions inventory and spatial distribution in the North China Plain Full text
2010
Zhang, Y. | Dore, A.J. | Ma, L. | Liu, X.J. | Ma, W.Q. | Cape, J.N. | Zhang, F.S.
An agricultural ammonia (NH3) emission inventory in the North China Plain (NCP) on a prefecture level for the year 2004, and a 5 × 5 km2 resolution spatial distribution map, has been calculated for the first time. The census database from China's statistics datasets, and emission factors re-calculated by the RAINS model supported total emissions of 3071 kt NH3–N yr−1 for the NCP, accounting for 27% of the total emissions in China. NH3 emission from mineral fertilizer application contributed 1620 kt NH3–N yr−1, 54% of the total emission, while livestock emissions accounted for the remaining 46% of the total emissions, including 7%, 27%, 7% and 5% from cattle, pigs, sheep and goats, and poultry, respectively. A high-resolution spatial NH3 emissions map was developed based on 1 × 1 km land use database and aggregated to a 5 × 5 km grid resolution. The highest emission density value was 198 kg N ha−1 yr−1. The first high-resolution spatial distribution of ammonia emissions for the North China Plain showed rates up to 200 kg NH3–N ha−1 yr−1.
Show more [+] Less [-]Reduced nitrogen in ecology and the environment Full text
2007
Erisman, J.W. | Bleeker, A. | Galloway, J. | Sutton, M.S.
Since the beginning of the 19th century humans have increasingly fixed atmospheric nitrogen as ammonia to be used as fertilizer. The fertilizers are necessary to create amino acids and carbohydrates in plants to feed animals and humans. The efficiency with which the fertilizers eventually reach humans is very small: 5-15%, with much of the remainder lost to the environment. The global industrial production of ammonia amounts to 117 Mton NH3-N year-1 (for 2004). By comparison, we calculate that anthropogenic emissions of NH3 to the atmosphere over the lifecycle of industrial NH3 in agriculture are 45.3 Mton NH3-N year-1, about half the industrial production. Once emitted ammonia has a central role in many environmental issues. We expect an increase in fertilizer use through increasing demands for food and biofuels as population increases. Therefore, management of ammonia or abatement is necessary. Half of industrial ammonia production is eventually lost to the global environment with significant effects.
Show more [+] Less [-]Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens Full text
2007
Geiser, L.H. | Neitlich, P.N.
Human activity is changing air quality and climate in the US Pacific Northwest. In a first application of non-metric multidimensional scaling to a large-scale, framework dataset, we modeled lichen community response to air quality and climate gradients at 1416 forested 0.4 ha plots. Model development balanced polluted plots across elevation, forest type and precipitation ranges to isolate pollution response. Air and climate scores were fitted for remaining plots, classed by lichen bioeffects, and mapped. Projected 2040 temperatures would create climate zones with no current analogue. Worst air scores occurred in urban-industrial and agricultural valleys and represented 24% of the landscape. They were correlated with: absence of sensitive lichens, enhancement of nitrophilous lichens, mean wet deposition of ammonium >0.06 mg l-1, lichen nitrogen and sulfur concentrations >0.6% and 0.07%, and SO2 levels harmful to sensitive lichens. The model can detect changes in air quality and climate by scoring re-measurements. Lichen-based air quality and climate gradients in western Oregon and Washington are responsive to regionally increasing nitrogen availability and to temperature changes predicted by climate models.
Show more [+] Less [-]Claroideoglomus etunicatum affects the structural and functional genes of the rhizosphere microbial community to help maize resist Cd and La stresses Full text
2022
Hao, Baihui | Zhang, Zhechao | Bao, Zhihua | Hao, Lijun | Diao, Fengwei | Li, Frank Yonghong | Guo, Wei
Arbuscular mycorrhizal fungi (AMF) and plant rhizosphere microbes reportedly enhance plant tolerance to abiotic stresses and promote plant growth in contaminated soils. The co-contamination of soil by heavy metals (e.g., Cd) and rare earth elements (e.g., La) represents a severe environmental problem. Although the influence of AMF in the phytoremediation of contaminated soils is well documented, the underlying interactive mechanisms between AMF and rhizosphere microbes are still unclear. We conducted a greenhouse pot experiment to evaluate the effects of AMF (Claroideoglomus etunicatum) on maize growth, nutrient and metal uptake, rhizosphere microbial community, and functional genes in soils with separate and combined applications of Cd and La. The purpose of this experiment was to explore the mechanism of AMF affecting plant growth and metal uptake via interactions with rhizosphere microbes. We found that C. etunicatum (i) significantly enhanced plant nutritional level and biomass and decreased metal concentration in the co-contaminated soil; (ii) significantly altered the structure of maize rhizosphere bacterial and fungal communities; (iii) strongly enriched the abundance of carbohydrate metabolism genes, ammonia and nitrate production genes, IAA (indole-3-acetic acid) and ACC deaminase (1-aminocyclopropane-1-carboxylate) genes, and slightly altered the abundance of P-related functional genes; (iv) regulated the abundance of microbial quorum sensing system and metal membrane transporter genes, thereby improving the stability and adaptability of the rhizosphere microbial community. This study provides evidence of AMF improving plant growth and resistance to Cd and La stresses by regulating plant rhizosphere microbial communities and aids our understanding of the underlying mechanisms.
Show more [+] Less [-]Being applied at rice or wheat season impacts biochar's effect on gaseous nitrogen pollutants from the wheat growth cycle Full text
2022
Zhang, Yu | Jeyakumar, Paramsothy | Xia, Changlei | Lam, Su Shiung | Jiang, Jiang | Sun, Haijun | Shi, Weiming
Biochar (BC) application to agricultural soil can impact two nitrogen (N) gases pollutants, i.e., the ammonia (NH₃) and nitrous oxide (N₂O) losses to atmospheric environment. Under rice-wheat rotation, applied at which growth cycle may influence the aforementioned effects of BC. We conducted a soil column (35 cm in inner diameter and 70 cm in height) experiment to evaluate the responses of wheat N use efficiency (NUE), NH₃ volatilization, and N₂O emission from wheat season to biochar applied at rice (R) or wheat (W) growth cycle, meanwhile regarding the effect of inorganic fertilizer N input rate, i.e., 72, 90, and 108 kg ha⁻¹ (named N72, N90, and N108, respectively). The results showed that BC application influenced the wheat growth and grain yield. In particular, BC applied at rice season increased the wheat grain yield when receiving 90 and 108 kg N ha⁻¹. The improved wheat grain yield was attributed to that N90 + BC(R) and N108 + BC(R) enhanced the wheat NUE by 53.8% and 52.8% over N90 and N108, respectively. More N input led to higher NH₃ volatilization and its emission factor. Interestingly, 19.7%–34.0% lower NH₃ vitalizations were recorded under treatments with BC applied in rice season, compared with the treatments only with fertilizer N. BC applied at rice season exerted higher efficiency on mitigating N₂O emission than that applied at wheat season under three N input rates, i.e., 60.5%–77.6% vs 29.8%–34.8%. Overall, considering the crop yield and global warming potential resulting from NH₃ volatilization and N₂O emission of wheat season, N90 + BC(R) is recommended. In conclusion, farmers should consider the application time and reduce inorganic fertilizer N rate when using BC.
Show more [+] Less [-]Emission factors of ammonia for on-road vehicles in urban areas from a tunnel study in south China with laser-absorption based measurements Full text
2021
Li, Sheng | Liu, Tengyu | Song, Wei | Pei, Chenglei | Huang, Zuzhao | Wang, Yujun | Chen, Yanning | Yan, Jianhong | Zhang, Runqi | Zhang, Yanli | Wang, Xinming
Vehicle emission is an important source of ammonia (NH₃) in urban areas. To better address the role of vehicle emission in urban NH₃ sources, the emission factor of NH₃ (NH₃-EF) from vehicles running on roads under real-world conditions (on-road vehicles) needs to update accordingly with the increasingly tightened vehicle emission standards. In this study, laser-absorption based measurements of NH₃ were conducted during a six-day campaign in 2019 at a busy urban tunnel with a daily traffic flow of nearly 40,000 vehicles in south China’s Pearl River Delta (PRD) region. The NH₃-EF was measured to be 16.6 ± 6.3 mg km⁻¹ for the on-road vehicle fleets and 19.0 ± 7.2 mg km⁻¹ for non-electric vehicles, with an NH₃ to CO₂ ratio of 0.27 ± 0.09 ppbv ppmv⁻¹. Multiple linear regression revealed that the average NH₃-EFs for gasoline vehicles (GVs), liquefied petroleum gas vehicles, and heavy-duty diesel vehicles (HDVs) were 18.8, 15.6, and 44.2 mg km⁻¹, respectively. While NH₃ emissions from GVs were greatly reduced with enhanced performance of engines and catalytic devices to meet stricter emission standards, the application of urea selective catalytic reduction (SCR) in HDVs makes their NH₃ emission an emerging concern. Based on results from this study, HDVs may contribute over 11% of the vehicular NH₃ emissions, although they only share ∼4% by vehicle numbers in China. With the updated NH₃-EFs, NH₃ emission from on-road vehicles was estimated to be 9 Gg yr⁻¹ in the PRD region in 2019, contributing only 5% of total NH₃ emissions in the region, but still might be a dominant NH₃ source in the urban centers with little agricultural activity.
Show more [+] Less [-]Effects of increasing organic nitrogen inputs on CO2, CH4, and N2O fluxes in a temperate grassland Full text
2021
Chen, Jihui | Zhang, Yingjun | Yang, Yi | Tao, Tingting | Sun, Xiao | Guo, Peng
Understanding future climate change requires accurate estimates of the impacts of atmospheric nitrogen (N) deposition, composed of both inorganic and organic compounds, on greenhouse gas (GHG) fluxes in grassland ecosystems. However, previous studies have focused on inorganic compounds and have not considered the potential effects of organic N sources. Here, we conducted a grassland experiment that included organic, inorganic N, and a mix of them at a ratio of 4:6, with two input rates, to study N inputs induced CO₂, CH₄, and N₂O fluxes, as well as the potential abiotic and biotic mechanisms driving the fluxes. We found that N compositions significantly affected fluxes each of the three GHGs. Greater organic N decreased the impacts of N addition on CO₂ and N₂O emissions, caused primarily by low rates of increase in substrates (soil available N) for production of CO₂ and N₂O resulting from high ammonia volatilization rather than changes in microbial activity. Also, greater organic N slightly stimulated CH₄ uptake. Nitrogen composition effects on CO₂ emissions and CH₄ uptake were independent of N input rates and measurement dates, but N₂O emissions showed stronger responses to inorganic N under high N addition and in June. These results suggest that future studies should consider the source of N to improve our prediction of future climate impact of N deposition, and that management of N fertilization can help mitigate GHG emissions.
Show more [+] Less [-]