Refine search
Results 1-10 of 79
Effect of temperature and retention time of biomethanation of cheese whey-poultry waste-cattle dung.
1994
Desai M. | Patel V. | Madamwar D.
Enhancement of anaerobic treatment efficiency through process modification.
1987
Harper S.R. | Pohland F.G.
olive oil mill wastewater abatement by anaerobic digestion followed by total solar evaporation
1993
Tsonis, S.P. (Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, Greece)
Effects of long-term exposure to the herbicide nicosulfuron on the bacterial community structure in a factory field
2022
Ma, Qingyun | Tan, Hao | Song, Jinlong | Li, Miaomiao | Wang, Zhiye | Parales, Rebecca E. | Li, Lin | Ruan, Zhiyong
This study aims to investigate the effects of long-term nicosulfuron residue on an herbicide factory ecosystem. High-throughput sequencing was used to investigate the environmental microbial community structure and interactions. The results showed that the main contributor to the differences in the microbial community structure was the sample type, followed by oxygen content, pH and nicosulfuron residue concentration. Regardless of the presence or absence of nicosulfuron, soil, sludge, and sewage were dominated by groups of Bacteroidetes, Actinobacteria, and Proteobacteria. Long-term exposure to nicosulfuron increased alpha diversity of bacteria and archaea but significantly decreased the abundance of Bacteroidetes and Acidobateria compared to soils without nicosulfuron residue. A total of 81 possible nicosulfuron-degrading bacterial genera, e.g., Rhodococcus, Chryseobacterium, Thermomonas, Stenotrophomonas, and Bacillus, were isolated from the nicosulfuron factory environmental samples through culturomics. The co-occurrence network analysis indicated that the keystone taxa were Rhodococcus, Stenotrophomonas, Nitrospira, Terrimonas, and Nitrosomonadaceae_MND1. The strong ecological relationship between microorganisms with the same network module was related to anaerobic respiration, the carbon and nitrogen cycle, and the degradation of environmental contaminants. Synthetic community (SynCom), which provides an effective top-down approach for the critical degradation strains obtained, enhanced the degradation efficiency of nicosulfuron. The results indicated that Rhodococcus sp. was the key genus in the environment of long-term nicosulfuron exposure.
Show more [+] Less [-]Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S
2022
Staicu, Lucian C. | Wójtowicz, Paulina J. | Molnár, Zsombor | Ruiz-Agudo, Encarnación | Gallego, José Luis R. | Baragaño, Diego | Pósfai, Mihály
Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO₄²⁻) and selenite (SeO₃²⁻) to red Se(-S)⁰, and arsenate (AsO₄³⁻) to arsenite (AsO₃³⁻). The release of H₂S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As₂S₃. When As and Se oxyanions were mixed, both As–S and Se(-S)⁰ biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (−24 to −38 mV). Kinetic analysis indicated the following reduction yields: SeO₃²⁻ (90%), AsO₄³⁻ (60%), and SeO₄²⁻ (<10%). The mix of SeO₃²⁻ with AsO₄³⁻ led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO₄²⁻ incubated with AsO₄³⁻ boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.
Show more [+] Less [-]1H-NMR metabolomics profiling of zebra mussel (Dreissena polymorpha): A field-scale monitoring tool in ecotoxicological studies
2021
Hani, Younes Mohamed Ismail | Prud’Homme, Sophie Martine | Nuzillard, Jean-Marc | Bonnard, Isabelle | Robert, Christelle | Nott, Katherine | Ronkart, Sébastien | Dedourge-Geffard, Odile | Geffard, Alain
Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières “CM” in France, Namur “Nam” and Charleroi “Cr” in Belgium). The aim was to test ¹H-NMR metabolomics for the assessment of water bodies’ quality. The metabolomic approach was combined with a more “classical” one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and ¹H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.
Show more [+] Less [-]Advances in understanding the mechanisms of mercury toxicity in wild golden grey mullet (Liza aurata) by 1H NMR-based metabolomics
2016
Cappello, Tiziana | Pereira, Patrícia | Maisano, Maria | Mauceri, Angela | Pacheco, Mario | Fasulo, Salvatore
Mercury (Hg) is recognized as a dangerous contaminant due to its bioaccumulation and biomagnification within trophic levels, leading to serious health risks to aquatic biota. Therefore, there is an urgent need to unravel the mechanisms underlying the toxicity of Hg. To this aim, a metabolomics approach based on protonic nuclear magnetic resonance (1H NMR), coupled with chemometrics, was performed on the gills of wild golden grey mullets L. aurata living in an Hg-polluted area in Ria de Aveiro (Portugal). Gills were selected as target organ due to their direct and continuous interaction with the surrounding environment. As a consequence of accumulated inorganic Hg and methylmercury, severe changes in the gill metabolome were observed, indicating a compromised health status of mullets. Numerous metabolites, i.e. amino acids, osmolytes, carbohydrates, and nucleotides, were identified as potential biomarkers of Hg toxicity in fish gills. Specifically, decrease of taurine and glycerophosphocholine, along with increased creatine level, suggested Hg interference with the ion-osmoregulatory processes. The rise of lactate indicated anaerobic metabolism enhancement. Moreover, the increased levels of amino acids suggested the occurrence of protein catabolism, further supported by the augmented alanine, involved in nitrogenous waste excretion. Increased level of isobutyrate, a marker of anoxia, was suggestive of onset of hypoxic stress at the Hg contaminated site. Moreover, the concomitant reduction in glycerophosphocholine and phosphocholine reflected the occurrence of membrane repair processes. Finally, perturbation in antioxidant defence system was revealed by the depletion in glutathione and its constituent amino acids. All these data were also compared to the differential Hg-induced metabolic responses previously observed in liver of the same mullets (Brandão et al., 2015). Overall, the environmental metabolomics approach demonstrated its effectiveness in the evaluation of Hg toxicity mechanisms in wild fish under realistic environmental conditions, uncovering tissue-specificities regarding Hg toxic effects namely in gills and liver.
Show more [+] Less [-]Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge
2013
Lombi, Enzo | Donner, Erica | Taheri, Shima | Tavakkoli, Ehsan | Jämting, Åsa K. | McClure, Stuart | Naidu, R. | Miller, Bradley W. | Scheckel, Kirk G. | Vasilev, Krasimir
The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-NPs to Ag2S is to be expected during wastewater transport/treatment. However, the influence of surface functionality, the nature of the core structure and the effect of post-processing on Ag speciation in sewage sludge/biosolids has not been investigated. This study aims at closing these knowledge gaps using bench scale anaerobic digesters spiked with Ag nitrate, three different types of Ag-NPs, and AgCl-NPs at environmentally realistic concentrations. The results indicate that neither surface functionality nor the different compositions of the NP prevented the formation of Ag2S. Silver sulfides, unlike the sulfides of other metals present in sewage sludge, were stable over a six month period simulating composting/stockpiling.
Show more [+] Less [-]Adaptive microbial population shifts in response to a continuous ethanol blend release increases biodegradation potential
2013
Ma, Jie | Nossa, Carlos W. | Xiu, Zongming | Rixey, William G. | Alvarez, Pedro J.J.
The fate of fuel releases largely depends on the poorly-understood response in microbial community structure and function. Here, we evaluate the impacts to the microbial community resulting from a pilot-scale continuous release (10 months) of a 10% v:v ethanol solution mixed with benzene and toluene (50 mg/L each). Microbial population shifts were characterized by pyrosequencing-based 16S rRNA analysis and by quantitative PCR targeting Bacteria, Archaea, and functional genes for methanogenesis (mcrA), acetogenesis (fhs) and aerobic degradation of aromatic hydrocarbons (PHE), which could occur in hypoxic micro-environments. The release stimulated microbial growth, increased species richness and diversity, and selected for genotypes involved in fermentative degradation (the relative abundance of mcrA and fhs increased 18- and 6-fold, respectively). The growth of putative hydrocarbon degraders and commensal anaerobes, and increases in microbial diversity and in degradation rates suggest an adaptive response that increases the potential for natural attenuation of ethanol blend releases.
Show more [+] Less [-]Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide
2010
Li, F.B. | Li, X.M. | Zhou, S.G. | Zhuang, L. | Cao, F. | Huang, D.Y. | Xu, W. | Liu, T.X. | Feng, C.H.
The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments.
Show more [+] Less [-]