Refine search
Results 1-10 of 25
Untangling causes of variation in mercury concentration between flight feathers
2021
Gatt, Marie Claire | Furtado, Ricardo | Granadeiro, José Pedro | Lopes, Daniel | Pereira, Eduarda | Catry, Paulo
Bird feathers are one of the most widely used animal tissue in mercury biomonitoring, owing to the ease of collection and storage. They are also the principal excretory pathway of mercury in birds. However, limitations in our understanding of the physiology of mercury deposition in feathers has placed doubt on the interpretation of feather mercury concentratoins. Throughout the literature, moult sequence and the depletion of the body mercury pool have been taken to explain patterns such as the decrease in feather mercury from the innermost (P1) to the outermost primary feather (P10) of the wing. However, it has been suggested that this pattern is rather a measurement artefact as a result of the increased feather mass to length ratio along the primaries, resulting in a dilution effect in heavier feathers. Here, we attempt to untangle the causes of variation in feather mercury concentrations by quantifying the mercury concentration as μg of mercury (i) per gram of feather, (ii) per millimetre of feather, and (iii) per day of feather growth in the primary feathers of Bulwer’s Petrel Bulweria bulwerii chicks, effectively controlling for some of the axes of variation that may be acting in adults, and monitoring the growth rate of primary feathers in chicks. The mercury concentration in Bulwer’s Petrel chicks’ primaries increased from the innermost to the outermost primary for all three concentration measures, following the order of feather emergence. These observations confirm that the pattern of mercury concentration across primary feathers is not an artefact of the measure of concentration, but is likely an effect of the order of feather growth, whereby the earlier grown feathers are exposed to higher blood mercury concentrations than are later moulted feathers as a result of blood mercury depletion.
Show more [+] Less [-]Bioaccumulation and metal-associated biomarker responses in a freshwater mussel, Dreissena polymorpha, following short-term platinum exposure
2019
Brand, Sarel J. | Erasmus, Johannes H. | Labuschagne, Marelize | Grabner, Daniel | Nachev, Milen | Zimmermann, Sonja | Wepener, V. | Smit, Nico | Sures, Bernd
Due to the increasing presence of platinum (Pt) in the environment, the caveat arises to identify its toxic potential in species at risk of being exposed – especially those found in aquatic environments where pollutants tend to accumulate. Comprehensive characterisation of possible adverse effects following exposure of aquatic organisms to Pt remains elusive. To address this, Zebra mussels (Dreissena polymorpha) were exposed to a range of Pt(IV) concentrations (0.1, 1, 10, 100 and 1000 μg/L) for one and four days, respectively, after which bioaccumulation was quantified and compared to alterations in biomarker profiles relevant to metal toxicity i.e. glutathione-S-transferase (GST) and catalase (CAT) activity, lipid peroxidation and metallothionein (MT) induction. Despite pre-conditioning of the tanks, Pt recovery in the exposure media was found to be 36% (0.1 μg/L), 42% (1 μg/L), 47% (10 μg/L), 68% (100 μg/L) and 111% (1000 μg/L) due to biological and non-biological processes. Pt concentrations in dried mussel soft tissue increased with exposure concentrations and were 20–153 times higher compared to quantified Pt concentrations in the exposure media. CAT activity was significantly increased in the tissue of mussels exposed to 0.1–100 μg/L Pt after Day 1 while the lowest effect concentration (LOC) for this response on both Day 1 and Day 4 was 0.1 μg/L. The effect on the GST activity was less pronounced but demonstrated a similar trend. However, enhanced lipid peroxidation was measured in the tissue of mussels exposed to ≥0.1 μg/L on Day 4. Bioaccumulation of Pt was also associated with a concentration-dependent increase in Pt-MT. Although these effects occurred at Pt levels higher than those present in the environment, it indicates that Pt has the ability to cause aberrancies in metal-associated biomarker profiles.
Show more [+] Less [-]Comparative toxicokinetics and tissue distribution of prothioconazole and prothioconazole-desthio in Chinese lizards (Eremias argus) and transcriptional responses of metabolic-related genes
2019
Xie, Yun | Li, Leon Yu Zheng | Hao, Weiyu | Chang, Jing | Xu, Peng | Guo, Baoyuan | Li, Jianzhong | Wang, Huili
Prothioconazole (PTC) is a widely used triazolinthione fungicide with low toxicity and short residual period. However, its desulfurization metabolite, prothioconazole-desthio (PTC-d), is more persistent and has higher toxicity in terrestrial animals. In this study, the toxicokinetics (TK) and tissue distribution of PTC and PTC-d in Chinese lizards (Eremias argus) were measured following single oral dose (100 mg kg⁻¹ body weight) treatments. TK parameters indicated that PTC was more rapidly absorbed than PTC-d, as indicated by its shorter time to reach peak concentrations in most tissues. Furthermore, the relative bioavailability of PTC in lizards was lower than that of PTC-d. Compared with PTC, PTC-d preferentially accumulated in lizards, as reflected by longer half-life of PTC-d. During the distribution process, PTC-d generated in vivo was transported from other tissues and was deposited in the skin and tail, where PTC-d may be excreted by exuviation or tail detachment. Preferential enrichment of S-enantiomer of both PTC and PTC-d were observed in all tissues. Hepatic cytochrome P450 gene expression measurement revealed that cyp1a5 and cyp3a28 exhibited the strongest responses in both treatment groups. In addition, the opposite responses of cyp2k4 in different treatment groups may indicate that this enzyme caused differences in the rates of metabolism of the two chemicals. This study compared the TK profile of PTC and its desulfurization metabolite PTC-d in lizards and demonstrated that the desulfurization of PTC could increase its ecological risk due to the higher bioavailability and persistence of PTC-d.
Show more [+] Less [-]Urbanization and cattle density are determinants in the exposure to anticoagulant rodenticides of non-target wildlife
2019
López-Perea, Jhon J. | Camarero, Pablo R. | Sánchez-Barbudo, Ines S. | Mateo, Rafael
The persistence and toxicity of second generation anticoagulant rodenticides (SGARs) in animal tissues make these compounds dangerous by biomagnification in predatory species. Here we studied the levels of SGARs in non-target species of wildlife and the environmental factors that influence such exposure. Liver samples of terrestrial vertebrates (n = 244) found dead between 2007 and 2016 in the region of Aragón (NE Spain) were analysed. The presence of SGARs was statistically analysed with binary or ordinal logistic models to study the effect of habitat characteristics including human population density, percentage of urban surface, livestock densities and surface of different types of crops. SGARs residues were detected in 83 (34%) of the animals and levels >200 ng/g were found in common raven (67%), red fox (50%), red kite (38%), Eurasian eagle-owl (25%), stone marten (23%), Eurasian buzzard (17%), northern marsh harrier (17%), and Eurasian badger (14%). The spatial analysis revealed that the presence of SGARs residues in wildlife was more associated with the use of these products as biocides in urban areas and cattle farms rather than as plant protection products in agricultural fields. This information permits to identify potential habitats where SGARs may pose a risk for predatory birds and mammals.
Show more [+] Less [-]Hg concentrations and related risk assessment in coral reef crustaceans, molluscs and fish from New Caledonia
2009
Chouvelon, Tiphaine | Warnau, Michel | Churfaud, Carine | Bustamante, Paco
There is a dramatic lack of data on Hg levels in marine organisms from tropical areas, and in particular from New Caledonia. For the first time, this study reports the total Hg concentrations in the tissues of several marine taxa from the New Caledonian lagoon. Seafood from both wild and farmed populations was considered. Hg concentrations varied over three orders of magnitudes according to factors including species, age (size/weight), trophic level, lifestyle and geographical origin. Taking into account the edible tissues, estimations of the amount of flesh that should be consumed by a 60-kg person to reach the Hg Provisional Tolerable Weekly Intake (PTWI) reveal acceptable risk for Human health in general. However, a risk was clearly identified in one site of the lagoon (i.e. Grande Rade) where high Hg concentrations were measured. These concentrations were higher than values reported in the current literature. This work reports the first assessment of Hg levels in edible organisms from the New Caledonian lagoon and the associated risk linked to their consumption by Human.
Show more [+] Less [-]Non-lethal sampling of avian indicators reveals reliable geographic signals of mercury despite highly dynamic patterns of exposure in a large wetland
2019
Zabala, Jabi | Rodriguez-Jorquera, Ignacio A. | Orzechowski, Sophia C. | Frederick, Peter
Mercury is a global contaminant with special relevance for aquatic food webs, where biomagnification can result in strong effects on apex predators. Non-lethal sampling of tissues such as blood and feathers is often used to assess mercury risk and spatiotemporal variability of mercury exposure on avian populations. However, the assumption that samples from individuals within a population are representative of local mercury exposure underpins those approaches. While this assumption may be justified, it is rarely expressed quantitatively. Further, the stability of the tissue/exposure relationship over time or space may depend on the sampling medium used, since some tissues and age classes may be better at reflecting local or short-term changes in exposure. Here, we present analyses of mercury concentrations from three tissues (albumen, blood and feathers) of the same individual great egret (Ardea alba) nestlings from breeding colonies in the Florida Everglades collected over three consecutive years. The interaction of year and colony location explained at least 50% of the observed variation in mercury concentration in all the sampled tissues. Annual colony-wide average Hg concentrations in any of the sampled tissues correlated with average Hg concentrations in the other two tissues from the same colony (R² > 0.53 in every case), while concentrations in albumen, blood and feathers from the same individual correlated poorly (R² < 0.23 in every case). We suggest that despite high variation between and within individuals of the same colony, annual colony-averaged mercury concentrations in albumen, nestling blood or feathers can be representative indicators of annual geographic differences in mercury exposure. These results support the use of non-lethal sampling of nestling tissues to reflect local mercury exposure over large spatial scales.
Show more [+] Less [-]Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and animals
2019
Courtois, Pauline | Rorat, Agnieszka | Lemiere, Sébastien | Guyoneaud, Rémy | Attard, Eléonore | Levard, Clément | Vandenbulcke, Franck
Silver nanoparticles (AgNPs) are widely incorporated in many products, partly due to their antimicrobial properties. The subsequent discharge of this form of silver into wastewater leads to an accumulation of silver species (AgNPs and derivatives resulting from their chemical transformation), in sewage sludge. As a result of the land application of sewage sludge for agricultural or remediation purposes, soils are the primary receiver media of silver contamination. Research on the long-term impact of AgNPs on the environment is ongoing, and this paper is the first review that summarizes the existing state of scientific knowledge on the potential impact of silver species introduced into the soil via sewage sludge, from microorganisms to earthworms and plants. Silver species can easily enter cells through biological membranes and affect the physiology of organisms, resulting in toxic effects. In soils, exposure to AgNPs may change microbial biomass and diversity, decrease plant growth and inhibit soil invertebrate reproduction. Physiological, biochemical and molecular effects have been documented in various soil organisms and microorganisms. Negative effects on organisms of the dominant form of silver in sewage sludge, silver sulfide (Ag₂S), have been observed, although these effects are attenuated compared to the effects of metallic AgNPs. However, silver toxicity is complex to evaluate and much remains unknown about the ecotoxicology of silver species in soils, especially with respect to the possibility of transfer along the trophic chain via accumulation in plant and animal tissues. Critical points related to the hazards associated with the presence of silver species in the environment are described, and important issues concerning the ecotoxicity of sewage sludge applied to soil are discussed to highlight gaps in existing scientific knowledge and essential research directions for improving risk assessment.
Show more [+] Less [-]Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings
2019
Liu, Haiqiang | Wang, Xinxin | Wu, Yazhou | Hou, Jing | Zhang, Siyi | Zhou, Nan | Wang, Xiangke
Silver nanoparticles (AgNPs) in aquatic ecosystems are toxic to aquatic organisms. In this study, we aimed to investigate the toxicities and molecular mechanisms of AgNPs with different surface coatings (sodium citrate and polyvinylpyrrolidone) and particle sizes (20 nm and 100 nm) in the gills, intestines, and muscles of zebrafish after 96 h of exposure. Our results indicated that the contribution of particle size to AgNP toxicity was greater than that of the surface coating. Citrate-coated AgNPs were more toxic than polyvinylpyrrolidone-coated AgNPs, and 20-nm AgNPs were more toxic than 100-nm AgNPs. The toxic effects of AgNPs to the tissues were in the order intestines > gills > muscles. Differential expression of genes with the different AgNPs confirmed that they had toxic effects in the zebrafish tissues at the molecular level. Our comprehensive comparison of the toxicities of different AgNPs to aquatic ecosystems will be helpful for further risk assessments of AgNPs.
Show more [+] Less [-]Toxicity beyond accumulation of Titanium after exposure of Mytilus galloprovincialis to spiked seawater
2019
Monteiro, Rui | Costa, Silvana | Coppola, Francesca | Freitas, Rosa | Vale, Carlos | Pereira, Eduarda
Mytilus galloprovincialis was exposed to seawater spiked with 5, 50 and 100 μg L⁻¹ of Titanium (Ti) for 14 days. Seawater was renewed after 96 h and new addition of Ti was done. A parallel experiment conducted in the absence of mussels showed that during the first 24 h after spiking, Ti concentrations in seawater rapidly decreased to values below 2 μg L⁻¹. For this reason, along the entire experimental period (14 days) mussels were exposed to Ti during two short periods, in the beginning of the experiment and after seawater renewal. At 96 h, mussels exhibited low Ti concentrations (<2.5 μg g⁻¹), close or not significantly different from a control condition (1.6 μg g⁻¹ in the absence of Ti). Despite the low accumulated Ti in mussels’ tissues after both experimental periods (96 h and 14 days), biochemical markers indicated that mussels developed two main strategies: reduction of their metabolic capacity to avoid the uptake of Ti, and antioxidant and biotransformation defense mechanisms, such as the activation of SOD, CAT, GPx and GSTs enzymes that were triggered to prevent cellular damages. Nevertheless, oxidative stress occurred after 96 h or 14 days. The current study highlights that alterations of biological activity of M. galloprovincialis exposed to Ti goes beyond its accumulation in tissues.
Show more [+] Less [-]Critical analysis of the relationship between imposex and butyltin body burden in Nassarius reticulatus and Nucella lapillus
2018
Rial, D. | Bellas, J. | Ruiz, J.M.
Imposex is a disorder caused by organotins, mainly tributyltin, which results in the appearance of male sexual characteristics in females of gastropod mollusks. The main objective of this work was to make a critical analysis of the relationship between imposex and butyltin body burdens in Nucella lapillus and Nassarius reticulatus. Specifically, this study evaluates possible additive effects among butyltins, proposes scales of effects based on robust statistical criteria as alternatives to existing ones and defines the body burdens of TBT in N. lapillus and N. reticulatus corresponding to the assessment classes (ACs) of the Vas Deferens Sequence Index (VDSI) established by OSPAR. Data of organotin body burdens and biological effects was retrieved from the ICES Dataset and from scientific literature. All responses, except the percentage of females displaying Imposex (IMPF) in Nucella lapillus, showed a sigmoidal profile regarding to the body burden of mono- (MBT), di- (DBT) and tributyltin and sum of butyltins (SumBTs). TBT and the SumBTs were better indicators of the VDSI or Relative Penis Size Index/Relative Penis Length Index (RPSI/RPLI) responses than MBT or DBT in most cases. From a statistical point of view, RPSI/RPLI and VDSI were better indicators of contamination by TBT than IMPF, although both RPSI and RPLI showed lower sensitivity than VDSI. The model used for describing the joint effect of butyltins provided a statistically significant fitting to the data assuming a null effect for both MBT and DBT for N. lapillus, and a lower toxic contribution of MBT and DBT with respect to TBT for N. reticulatus. RPSI or RPLI values, equivalent to the ACs for VDSI, were proposed as alternative criteria when measuring moderate to high levels of imposex. TBT concentrations in N. reticulatus and N. lapillus tissues, corresponding to the ACs were calculated and provided valuable information for cross-species comparisons.
Show more [+] Less [-]