Refine search
Results 1-10 of 436
Use of the MicroResp™ method to assess pollution-induced community tolerance to metals for lotic biofilms Full text
2011
Tlili , Ahmed (Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture, Lyon cedex 09(France). UR MAEP) | Maréchal , Marjorie (Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture, Lyon cedex 09(France). UR MAEP) | Montuelle , Bernard (Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture, Lyon cedex 09(France). UR MAEP) | Volat , Bernadette (Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture, Lyon cedex 09(France). UR MAEP) | Dorigo , Ursula (INRA , Thonon-Les-Bains (France). UMR 0042 Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes limniques) | Berard , Annette (INRA , Avignon (France). UMR 1114 Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes )
Understanding the ecological status of aquatic ecosystems and the impact of anthropogenic contamination requires correlating exposure to toxicants with impact on biological communities. Several tools exist for assessing the ecotoxicity of substances, but there is still a need for new tools that are ecologically relevant and easy to use. We have developed a protocol based on the substrate-induced respiration of a river biofilm community, using the MicroResp™ technique, in a pollution-induced community tolerance approach. The results show that MicroResp™ can be used in bioassays to assess the toxicity toward biofilm communities of a wide range of metals (Cu, Zn, Cd, Ag, Ni, Fe, Co, Al and As). Moreover, a community-level physiological profile based on the mineralization of different carbon substrates was established. Finally, the utility of MicroResp™ was confirmed in an in-situ study showing gradient of tolerance to copper correlated to a contamination gradient of this metal in a small river. A modified MicroResp™ technique as a tool for measuring induced tolerance to heavy metals of a microbial biofilm community
Show more [+] Less [-]A critical review of pollution active biomonitoring using sentinel fish: Challenges and opportunities Full text
2024
Bancel, Sarah | Cachot, Jérôme | Bon, Corentin | Rochard, Éric | Geffard, Olivier | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS) | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Agence de l'Eau Adour-Garonne | INRAE EABX | INRAE Riverly
International audience | Water pollution is a significant threat to aquatic ecosystems. Various methods of monitoring, such as in situ approaches, are currently available to assess its impact. In this paper we examine the use of fish in active biomonitoring to study contamination and toxicity of surface waters. We analysed 148 previous studies conducted between 2005 and 2022, including both marine and freshwater environments, focusing on the characteristics of the organisms used as well as the principal goals of these studies. The main conclusions we drew are that a wide range of protocols and organisms have been used but there is no standardised method for assessing the quality of aquatic ecosystems on a more global scale. Additionally, the most commonly used developmental stages have been juveniles and adults. At these stages, the most frequently used species were the fathead minnow (Pimephales promelas) and two salmonids: rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Few studies used earlier stages of development (embryos or larvae), mostly due to the difficulty of obtaining fish embryos and caging them in the field. Finally, we identified research gaps in active biomonitoring for water quality assessment which could indicate useful directions for future research and development.
Show more [+] Less [-]The variations of antibiotics and antibiotic resistance genes in two subtropical large river basins of south China: Anthropogenic impacts and environmental risks Full text
2022
Gao, Fang-Zhou | He, Liang-Ying | Hu, Li-Xin | Chen, Jun | Yang, Yuan-Yuan | He, Lu-Xi | Bai, Hong | Liu, You-Sheng | Zhao, Jian-Liang | Ying, Guang-Guo
Emission of antibiotics into riverine environments affects aquatic ecosystem functions and leads to the development of antibiotic resistance. Here, the profiles of forty-four antibiotics and eighteen antibiotic resistance genes (ARGs) were analyzed in two large rivers of the Pearl River System. In addition, the risks of ecotoxicity and resistance selection posed by the antibiotics were estimated. As compared to the reservoirs, the river sections close to the urban and livestock areas contained more antibiotics and ARGs. Seasonal variations of antibiotics (higher in the dry season) and relative ARGs (normalized by 16S rRNA gene, higher in the wet season) were found in the water, but not in the sediment. Sulfonamide resistance genes were the most prevalent ARGs in both river water and sediment. Antibiotic concentration was correlated with ARG abundance in the water, indicating that antibiotics play a critical role in ARG spread. In addition, oxytetracycline was the most abundant antibiotic with concentrations up to 2030 ng/L in the water and 2100 ng/g in the sediment respectively, and posed the highest risks for resistance selection. Oxytetracycline, tetracycline and sulfamethoxazole were expected to be more ecotoxicologically harmful to aquatic organisms, while ofloxacin, enrofloxacin, norfloxacin, chlortetracycline, oxytetracycline and tetracycline posed ecotoxicological risks in the sediment. The Nanliujiang river with intensive livestock activities was contaminated by antibiotics and ARGs and faced high ecotoxicological and resistance selection risks. Collectively, these findings reflect the impacts of anthropogenic activities on the spread of antibiotic resistance in large river basins.
Show more [+] Less [-]Metal accumulation varies with life history, size, and development of larval amphibians Full text
2021
Smalling, Kelly L. | Oja, Emily B. | Cleveland, Danielle M. | Davenport, Jon M. | Eagles-Smith, Collin | Campbell Grant, Evan H. | Kleeman, Patrick M. | Halstead, Brian J. | Stemp, Kenzi M. | Tornabene, Brian J. | Bunnell, Zachary J. | Hossack, Blake R.
Amphibian larvae are commonly used as indicators of aquatic ecosystem health because they are susceptible to contaminants. However, there is limited information on how species characteristics and trophic position influence contaminant loads in larval amphibians. Importantly, there remains a need to understand whether grazers (frogs and toads [anurans]) and predators (salamanders) provide comparable information on contaminant accumulation or if they are each indicative of unique environmental processes and risks. To better understand the role of trophic position in contaminant accumulation, we analyzed composite tissues for 10 metals from larvae of multiple co-occurring anuran and salamander species from 20 wetlands across the United States. We examined how metal concentrations varied with body size (anurans and salamanders) and developmental stage (anurans) and how the digestive tract (gut) influenced observed metal concentrations. Across all wetlands, metal concentrations were greater in anurans than salamanders for all metals tested except mercury (Hg), selenium (Se), and zinc (Zn). Concentrations of individual metals in anurans decreased with increasing weight and developmental stage. In salamanders, metal concentrations were less correlated with weight, indicating diet played a role in contaminant accumulation. Based on batches of similarly sized whole-body larvae compared to larvae with their digestive tracts removed, our results indicated that tissue type strongly affected perceived concentrations, especially for anurans (gut represented an estimated 46–97% of all metals except Se and Zn). This suggests the reliability of results based on whole-body sampling could be biased by metal, larval size, and development. Overall, our data shows that metal concentrations differs between anurans and salamanders, which suggests that metal accumulation is unique to feeding behavior and potentially trophic position. To truly characterize exposure risk in wetlands, species of different life histories, sizes and developmental stages should be included in biomonitoring efforts.
Show more [+] Less [-]Waterborne zinc bioaccumulation influences glucose metabolism in orange-spotted grouper embryos Full text
2021
Zeng, Huiling | Zhang, Peifeng | Ye, Hengzhen | Ji, Yuxiang | Hogstrand, Christer | Green, Iain | Xiao, Juan | Fu, Qiongyao | Guo, Zhiqiang
Fish embryos, as an endogenous system, strictly regulate an energy metabolism that is particularly sensitive to environmental pressure. This study used orange-spotted grouper embryos and stable isotope ⁶⁷Zn to test the hypothesis that waterborne Zn exposure had a significant effect on energy metabolism in embryos. The fish embryos were exposed to a gradient level of waterborne ⁶⁷Zn, and then sampled to quantify ⁶⁷Zn bioaccumulation and mRNA expressions of key genes involved glucose metabolism. The results indicated that the bioaccumulated ⁶⁷Zn generally increased with increasing waterborne ⁶⁷Zn concentrations, while it tended to be saturated at waterborne ⁶⁷Zn > 0.7 mg L⁻¹. As we hypothesized, the expression of PK and PFK gene involved glycolysis pathway was significantly up-regulated under waterborne ⁶⁷Zn exposure >4 mg L⁻¹. Waterborne ⁶⁷Zn exposure >2 mg L⁻¹ significantly suppressed PCK and G6PC gene expression involved gluconeogenesis pathway, and also inhibited the AKT2, GSK-3beta and GLUT4 genes involved Akt signaling pathway. Our findings first characterized developmental stage-dependent Zn uptake and genotoxicity in fish embryos. We suggest fish embryos, as a small-scale modeling biosystem, have a large potential and wide applicability for determining cytotoxicity/genotoxicity of waterborne metal in aquatic ecosystem.
Show more [+] Less [-]Multi-biomarkers approach to access the impact of novel metal-insecticide based on flavonoid hesperidin on fish Full text
2021
Bonomo, Marina Marques | Sachi, Ivelise Teresa de Castro | Paulino, Marcelo Gustavo | Fernandes, Joaõ Batista | Carlos, Rose Maria | Fernandes, Marisa Narciso
Aquatic ecosystem health is the main concern to increasing pesticides application to control agricultural pests as it is the ultimate receptor of such materials. This study evaluated the impact of new metal-insecticide, the [Mg(hesp)₂(phen)], referred as MgHP, on fish using physiological, genetic, biochemical, and morphological biomarkers. The fish, Prochilodus lineatus, was exposed to 0 (control), 1, 10, 100, 1000 μg L⁻¹ MgHP, for 24 and 96 h. MgHP was not lethal but caused genotoxicity, altered hematological variables and, the activity of antioxidant and biotransformation enzymes and histology of liver, depending on concentration and time exposure. Hematocrit and erythrocyte number (RBC) increased without change hemoglobin content resulting in changes in hematimetric indexes after 24 h; after 96 h, only RBC was changed. Erythrocyte nuclear abnormalities and crenate cells increased after 24 h but, not after 96 h. Erythrocytes and hepatocytes indicated instability in DNA integrity however, the absence of micronuclei suggested DNA damage repairment. After 24 h, the antioxidant defense system and the phase II biotransformation enzyme was responsiveness and catalase activity decreased at high MgHP concentrations; the antioxidant response was triggered after 96 h. Hepatocyte hypertrophy, intracellular cytoplasmic substances, cytoplasm degeneration, melanomacrophage and hyperemia increased in fish exposed from 10 μg L⁻¹ to higher MgHP concentrations; the organ alteration index increased as MgHP concentration increased showing dose-dependence. Most of hematological and genotoxic effects occurred after 24 h exposure evidencing potential recover capability of organism by activation of the antioxidant defense system and DNA repairment mechanisms. Nevertheless, the histopathological changes in the liver was maintained over time at high MgHP concentrations, a concentration usually no environmental relevant. In conclusion, this data reinforced the importance of continuing research on MgHP effects in other organisms considering the promising use of such compound to control the leaf-cutter ants and other insects.
Show more [+] Less [-]Microplastics in aquatic environments: Toxicity to trigger ecological consequences Full text
2020
Ma, Hui | Pu, Shengyan | Liu, Shibin | Bai, Yingchen | Mandal, Sandip | Xing, Baoshan
The prevalence of microplastic debris in aquatic ecosystems as a result of anthropogenic activity has received worldwide attention. Although extensive research has reported ubiquitous and directly adverse effects on organisms, only a few published studies have proposed the long-term ecological consequences. The research in this field still lacks a systematic overview of the toxic effects of microplastics and a coherent understanding of the potential ecological consequences. Here, we draw upon cross-disciplinary scientific research from recent decades to 1) seek to understand the correlation between the responses of organisms to microplastics and the potential ecological disturbances, 2) summarize the potential ecological consequences triggered by microplastics in aquatic environments, and 3) discuss the barriers to the understanding of microplastic toxicology. In this paper, the physiochemical characteristics and dynamic distribution of microplastics were related to the toxicological concerns about microplastic bioavailability and environmental perturbation. The extent of the ecological disturbances depends on how the ecotoxicity of microplastics is transferred and proliferated throughout an aquatic environment. Microplastics are prevalent; they interfere with nutrient productivity and cycling, cause physiological stress in organisms (e.g., behavioral alterations, immune responses, abnormal metabolism, and changes to energy budgets), and threaten the ecosystem composition and stability. By integrating the linkages among the toxicities that range from the erosion of individual species to the defective development of biological communities to the collapse of the ecosystem functioning, this review provides a bottom-up framework for future research to address the mechanisms underlying the toxicity of microplastics in aquatic environments and the substantial ecological consequences.
Show more [+] Less [-]Trophic transfer and biotransformation of selenium in the mosquito (Aedes albopictus) and interactive effects with hexavalent chromium Full text
2020
Zhou, Chuanqi | Huang, Jung-Chen | Zheng, Lixin | He, Shengbing | Zhou, Weili
As an essential micronutrient for animals with a narrow range between essentiality and toxicity, selenium (Se) usually coexists with chromium (Cr) in contaminated aquatic environments. This study investigated effects of three diets (Microcystis aeruginosa, Chlorella vulgaris and biofilms) exposed to Se or/and Cr on Aedes albopictus as a vector for the aquatic-terrestrial transfer of Se and Cr. Se(IV)-exposed mosquitoes concentrated Se up to 66-fold faster than Se(VI)-exposed ones, corresponding to the greater Se enrichment in Se(IV)-treated diets. Analysis using synchrotron-based X-ray absorption spectroscopy (XAS) showed that Se(0) (61.9–74.6%) dominated Se(VI)-exposed mosquitoes except for the C. vulgaris-fed larvae (organo-Se, 94.0%), while organo-Se accounted for 93.3–100.0% in Se(IV)-exposed mosquitoes. Cr accumulation in larvae (56.40–87.24 μg Cr/g DW) or adults (19.41–50.77 μg Cr/g DW) was not significantly different among all Cr(VI) treatments, despite varying diet Cr levels. With Cr(0) being dominant (57.7–94.0%), Cr(VI)-exposed mosquitoes posed little threat to predators. Although mosquitoes exposed to Se or Cr had shorter wings, adults supplied with C. vulgaris or biofilms co-exposed to Se(VI) and Cr(VI) had wings significantly (1.1–1.2 fold) longer than Se(VI) only exposed ones. Overall, our study reveals the role of Ae. albopictus in transferring waterborne Se and Cr from the contaminated aquatic ecosystem to the terrestrial ecosystem with the resulting eco-risks to wildlife in both ecosystems.
Show more [+] Less [-]Do whitefish (Coregonus lavaretus) larvae show adaptive variation in the avoidance of microplastic ingestion? Full text
2020
Huuskonen, Hannu | Subiron i Folguera, Joan | Kortet, Raine | Akkanen, Jarkko | Vainikka, Anssi | Janhunen, Matti | Kekäläinen, Jukka
The presence of microplastics in aquatic ecosystems has recently received increased attention. Small plastic particles may resemble natural food items of larval fish and other aquatic organisms, and create strong selective pressures on the feeding traits in exposed populations. Here, we examined if larval ingestion of 90 μm polystyrene microspheres, in the presence of zooplankton (Artemia nauplii, mean length = 433 μm), shows adaptive variation in the European whitefish (Coregonus lavaretus). A full-factorial experimental breeding design allowed us to estimate the relative contributions of male (sire) and female (dam) parents and full-sib family variance in early feeding traits, and also genetic (co)variation between these traits. We also monitored the magnitude of intake and elimination of microplastics from the alimentary tracts of the larvae. In general, larval whitefish ingested small numbers of microplastics (mean = 1.8, range = 0–26 particles per larva), but ingestion was marginally affected by the dam, and more strongly by the full-sib family variation. Microsphere ingestion showed no statistically significant additive genetic variation, and thus, no heritability. Moreover, microsphere ingestion rate covaried positively with the ingestion of Artemia, further suggesting that larvae cannot adaptively avoid microsphere ingestion. Together with the detected strong genetic correlation between food intake and microplastic intake, the results suggest that larval fish do not readily possess additive genetic variation that would help them to adapt to the increasing pollution by microplastics. The conflict between feeding on natural food and avoiding microplastics deserves further attention.
Show more [+] Less [-]Effects of endocrine disrupting chemicals in pigs Full text
2020
Yang, Changwon | Song, Gwonhwa | Lim, Whasun
Endocrine-disrupting chemicals (EDCs) are compounds that interfere with the expression, synthesis, and activity of hormones in organisms. They are released into the environment from flame retardants and products containing plasticizers. Persistent pesticides, such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene, also disrupt the endocrine system through interaction with hormone receptors. Endogenous hormones, such as 17β-estradiol (E2), are released in the urine and feces of farm animals and seep into terrestrial and aquatic ecosystems through sewage. Pigs are widely used as animal models to determine the effects of EDCs because they are physiologically, biochemically, and histologically similar to humans. EDCs primarily disrupt the reproductive and nervous systems of pigs. Moreover, embryonic development during the prenatal and early postnatal periods is particularly sensitive to EDCs. Mycotoxins, such as zearalenone, are food contaminants that alter hormonal activities in pigs. Mycotoxins also alter the innate immune system in pigs, making them vulnerable to diseases. It has been reported that farm animals are exposed to various types of EDCs, which accumulate in tissues, such as those of gonads, livers, and intestines. There is a lack of an integrated understanding of the impact of EDCs on porcine reproduction and development. Thus, this article aims to provide a comprehensive review of literature regarding the effects of EDCs in pigs.
Show more [+] Less [-]