Refine search
Results 1-7 of 7
Effect of C/N substrates for enhanced extracellular polymeric substances (EPS) production and Poly Cyclic Aromatic Hydrocarbons (PAHs) degradation
2021
Premnath, N. | Mohanrasu, K. | Guru Raj Rao, R. | Dinesh, G.H. | Siva Prakash, G. | Pugazhendhi, Arivalagan | Jeyakanthan, J. | Govarthanan, Muthusamy | Kumar, Ponnuchamy | Arun, A.
Extracellular Polymeric Substances (EPS) influenced Poly Cyclic Aromatic Hydrocarbons (PAHs) degrading Klebsiella pneumoniae was isolated from the marine environment. To increase the EPS production by Klebsiella pneumoniae, several physicochemical parameters were tweaked such as different carbon sources (arabinose, glucose, glycerol, lactose, lactic acid, mannitol, sodium acetate, starch, and sucrose at 20 g/L), nitrogen sources (ammonium chloride, ammonium sulphate, glycine, potassium nitrate, protease peptone and urea at 2 g/L), different pH, carbon/nitrogen ratio, temperature, and salt concentration were examined. Maximum EPS growth and biodegradation of Anthracene (74.31%), Acenaphthene (67.28%), Fluorene (62.48%), Naphthalene (57.84%), and mixed PAHs (55.85%) were obtained using optimized conditions such as glucose (10 g/L) as carbon source, potassium nitrate (2 g/L) as the nitrogen source at pH 8, growth temperature of 37 °C, 3% NaCl concentration and 72 h incubation period. The Klebsiella pneumoniae biofilm architecture was studied by confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM). The present study demonstrates the EPS influenced PAHs degradation of Klebsiella pneumoniae.
Show more [+] Less [-]Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.)
2020
Duan, Dechao | Tong, Jianhao | Xu, Qiao | Dai, Luying | Ye, Jien | Wu, Hanxin | Xu, Chen | Shi, Jiyan
Though the interaction between humic acid (HA) and heavy metals has been widely reported, the effects of HA on the toxicity of heavy metals to plants are still in debate. In this study, the regulation mechanisms of HA on Pb stress in tea plant (Camellia sinensis L.) was investigated through hydroponic experiments, and the experimental results were explained by using transmission electron microscope (TEM), scanning transmission X-ray microscopes (STXM) and isobaric tags for relative and absolute quantitation (iTRAQ) differential proteomics. Significant alleviation of Pb stress was found with HA coexistence. TEM results showed that HA greatly mitigated the damage of cells caused by Pb stress. Compared with sole Pb treatment, the addition of HA increased the contents of pectin and pectic acid in the cell wall by 10.5% and 30.5%, while arabinose (Ara) and galactose (Gal) decreased by 20.5% and 15.9%, respectively, which were beneficial for increasing Pb adsorption capacity of the cell wall and promoting cell elongation. Moreover, iTRAQ differential proteomics analysis proved that HA strengthened the antioxidant system, promoted the synthesis of cell wall, and stabilized protein and sulfur-containing substance metabolism in molecular level. Notably, the concentration of calcium (Ca) in the cell wall of HA coexistence treatment was 47.4% higher than Pb treatment. STXM results also indicated that the distribution of Ca in the cell wall was restored with the presence of HA. This might promote the formation of the egg-box model, thus alleviating Pb stress in cells. Our results reveal the regulation mechanisms of HA on Pb detoxification in plants and provide useful information for improving the safety of agricultural products.
Show more [+] Less [-]Biosorption and degradation of decabromodiphenyl ether by Brevibacillus brevis and the influence of decabromodiphenyl ether on cellular metabolic responses
2016
Wang, Linlin | Tang, Litao | Wang, Ran | Wang, Xiaoya | Ye, Jinshao | Long, Yan
There is global concern about the effects of decabromodiphenyl ether (BDE209) on environmental and public health. The molecular properties, biosorption, degradation, accumulation, and cellular metabolic effects of BDE209 were investigated in this study to identify the mechanisms involved in the aerobic biodegradation of BDE209. BDE209 is initially absorbed by wall teichoic acid and N-acetylglucosamine side chains in peptidoglycan, and then, BDE209 is transported and debrominated through three pathways, giving tri-, hepta-, octa-, and nona-bromodiphenyl ethers. The C–C bond energies decrease as the number of bromine atoms on the diphenyl decreases. Polybrominated diphenyl ethers (PBDEs) inhibit protein expression or accelerate protein degradation and increase membrane permeability and the release of Cl⁻, Na⁺, NH₄⁺, arabinose, proteins, acetic acid, and oxalic acid. However, PBDEs increase the amounts of K⁺, Mg²⁺, PO₄³⁻, SO₄²⁻, and NO₃⁻ assimilated. The biosorption, degradation, accumulation, and removal efficiencies when Brevibacillus brevis (1 g L⁻¹) was exposed to BDE209 (0.5 mg L⁻¹) for 7 days were 7.4, 69.5, 16.3, and 94.6 %, respectively.
Show more [+] Less [-]Sustainable use of agro-industrial wastes as potential feedstocks for exopolysaccharide production by selected Halomonas strains
2022
Large quantities of waste biomass are generated annually worldwide by many industries and are vastly underutilized. However, these wastes contain sugars and other dissolved organic matter and therefore can be exploited to produce microbial biopolymers. In this study, four selected Halomonas strains, namely, Halomonas caseinilytica K1, Halomonas elongata K4, Halomonas smyrnensis S3, and Halomonas halophila S4, were investigated for the production of exopolysaccharides (EPS) using low-cost agro-industrial wastes as the sole carbon source: cheese whey, grape pomace, and glycerol. Interestingly, both yield and monosaccharide composition of EPS were affected by the carbon source. Glucose, mannose, galactose, and rhamnose were the predominant monomers, but their relative molar ratio was different. Similarly, the average molecular weight of the synthesized EPS was affected, ranging from 54.5 to 4480 kDa. The highest EPS concentration (446 mg/L) was obtained for H. caseinilytica K1 grown on cheese whey that produced an EPS composed mostly of galactose, rhamnose, glucose, and mannose, with lower contents of galacturonic acid, ribose, and arabinose and with a molecular weight of 54.5 kDa. Henceforth, the ability of Halomonas strains to use cost-effective substrates, especially cheese whey, is a promising approach for the production of EPS with distinct physicochemical properties suitable for various applications.
Show more [+] Less [-]Development of astaxanthin production from citrus peel extract using Xanthophyllomyces dendrorhous
2021
Hara, Kiyotaka Y. | Kageyama, Yuya | Tanzawa, Nanami | Hirono-Hara, Yoko | Kikukawa, Hiroshi | Wakabayashi, Keiji
Developing a use for the inedible parts of citrus, mainly peel, would have great environmental and economic benefits worldwide. Astaxanthin is a value-added fine chemical that affects fish pigmentation and has recently been used in healthcare products for humans, resulting in an increased demand. This study aimed to produce astaxanthin from a citrus, ponkan, peel extract using the yeast Xanthophyllomyces dendrorhous, which has the ability to use both pentose and hexose. Feeding on only ponkan peel extract enhanced X. dendrorhous growth and the concomitant astaxanthin production. Additionally, we determined that pectin and its arabinose content were the main substrate and sole carbon source, respectively, for X. dendrorhous growth and astaxanthin production. Thus, ponkan peel extract could become a valuable resource for X. dendrorhous–based astaxanthin production. Using citrus peel extract for microbial fermentation will allow the development of processes that produce value-added chemicals from agricultural byproducts.
Show more [+] Less [-]Steam explosion pretreatment of rice straw to improve structural carbohydrates anaerobic digestibility for biomethanation
2019
Siddhu, Muhammad Abdul Hanan | Li, Wanwu | He, Yanfeng | Liu, Guangqing | Chen, Chang
Effectiveness of steam explosion (SE) pretreatment for deconstructing the complex structural carbohydrates (SC) and lignin recalcitrance properties of rice straw (RS) for conjunctive improvement of biofuel yield and waste valorization was evaluated. This work exhibited successful pretreatment of RS at a different pressure (1.2, 1.5, and 1.8 MPa) and retention (3, 6, 9, and 12 min) for enhancement of SC contribution to biomethane production. Regression analysis demonstrated that SE pretreatment efficiency improved at high-temperature and short-retention time for biodegradation of RS. Maximum cumulative methane yield (EMY) achieved 254.8 mL/gvs at 1.2 MPa (3 min) of SE-treated RS with 62.7% of very significant improvement compared with untreated RS (156.6 mL/gvs). Furthermore, solid fraction of xylose, arabinose, cellobiose, glucose, and acid-soluble lignin in SE-treated RS of 1.2 MPa (3 min) were biodegraded by 27.4%, 46.4%, 100%, 48.8%, and 14.1%, respectively, after anaerobic digestion. Therefore, SE pretreatment was an encouraging approach for enhancing SC conversion to biomethane and waste resource to circular economy.
Show more [+] Less [-]Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress
2010
Ozturk, Sahlan | Aslim, Belma
Background, aim, and scope Polysaccharides are renewable resources representing an important class of polymeric materials of biotechnological interest, offering a wide variety of potentially useful products to mankind. Exopolysaccharides (EPSs) of microbial origin with a novel functionality, reproducible physico-chemical properties, stable cost and supply, became a better alternative to polysaccharides of algal origin. EPSs are believed to protect bacterial cells from desiccation, heavy metals or other environmental stresses, including hostimmune responses, and to produce biofilms, thus enhancing the cells chances of colonising special ecological niches. One of the most important stress factor is salt stress for microorganisms. The present investigation is aimed to determine correlation between salt resistance and EPS production by three cyanobacterial isolates (Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511). It is also aimed to investigate the effect of salt concentrations on EPS production by cyanobacteria and effect of salt on monosaccharide composition of EPS. Materials and methods Cyanobacterial isolates were identified by 16 S rRNA analysis. Its salt (NaCl) tolerance and association with exopolysaccharides (EPSs) production in three cyanobacterial isolates were investigated. Also, EPS was analysed by HPLC for monomer characterization. Results Increased EPS production was associated with NaCl tolerance. The most tolerant isolate, Synechocystis sp. BASO444, secreted the most EPS (500 mg/L). EPS production by Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511 was investigated following exposure to 0.2 and 0.4 M NaCl. Also, flasks containing medium without NaCl were inoculated in the same manner to serve as controls. The monosaccharide compositions of EPS produced by the three isolates following exposure to 0.2 M NaCl were analysed by HPLC. Control EPS of BASO444 was composed of glucose (97%) and galacturonic acid (3%). The composition of BASO511 (control) was glucose (95%), xylose (4.80%), arabinose (0.13%), glucuronic acid (0.03%) and galacturonic acid (0.04%). However, the composition of BASO507 (control) was glucose (0.98%), xylose (98.00%), arabinose (1.00%), glucuronic acid (0.01%) and galacturonic acid (0.01%). In the presence of 0.2 M NaCl, EPS compositions and ratios of three cyanobacterial isolates changed. Discussion Although hyperproduction of EPS in response to starvation, antiviral activity, thickening agent and cosmetic industry for product formulations has been reported for cyanobacteria, the effect of NaCl on EPS production in cyanobacteria is not a popular area of study. There are no clear reports correlating EPS production and NaCl tolerance. The gap in the data about the effect of NaCl on cyanobacterial EPS production was filled by this investigation, and the results of our study have important implications in both the industrial and environmental arenas. Conclusions Our results indicate that 1) exposure to elevated concentrations of NaCl affects the composition of EPS produced by Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511, and 2) there is a correlation between NaCl tolerance and EPS production in some cyanobacteria. Recommendations and perspectives Differences in the monosaccharide composition and ratios of EPS may promote NaCl tolerance in these microorganisms. As well, these alternative composition polysaccharides may be important for industrial applications.
Show more [+] Less [-]