Refine search
Results 1-10 of 63
First record of plastic debris in the stomach of a hooded seal pup from the Greenland Sea
2021
Pinzone, Marianna | Nordoy, Erling S. | Eppe, Gauthier | Malherbe, Cédric | Das, Krishna | Collard, France
peer reviewed | We found plastic debris in the stomach of an Arctic seal pup for the first time. Debris consisted of two pieces of light single-use plastic. Newborns of Arctic seals are at risk of exposure to plastic directly after weaning. Ecotoxicological investigations of plastic exposure to Arctic wildlife are needed.
Show more [+] Less [-]Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning?
2016
Fort, Jérôme | Grémillet, David | Traisnel, Gwendoline | Amélineau, Françoise | Bustamante, Paco | LIttoral ENvironnement et Sociétés (LIENSs) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Percy FitzPatrick Institute ; University of Cape Town | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | European Project: 631203,EC:FP7:PEOPLE,FP7-PEOPLE-2013-CIG,ARCTOX(2014)
International audience | Studying long-term trends of contaminants in Arctic biota is essential to better understand impacts of anthropogenic activities and climate change on the exposure of sensitive species and marine ecosystems. We concurrently measured temporal changes (2006e2014) in mercury (Hg) contamination of little auks (Alle alle; the most abundant Arctic seabird) and in their major zooplankton prey species (Calanoid copepods, Themisto libellula, Gammarus spp.). We found an increasing contamination of the food-chain in East Greenland during summer over the last decade. More specifically, bird contamination (determined by body feather analyses) has increased at a rate of 3.4% per year. Conversely, bird exposure to Hg during winter in the northwest Atlantic (determined by head feather analyses) decreased over the study period (at a rate of 1.5% per year), although winter concentrations remained consistently higher than during summer. By combining mercury levels measured in birds and zooplankton to isotopic analyses, our results demonstrate that inter-annual variations of Hg levels in little auks reflect changes in food-chain contamination, rather than a reorganization of the food web and a modification of seabird trophic ecology. They therefore underline the value of little auks, and Arctic seabirds in general, as bio-indicators of long-term changes in environmental contamination.
Show more [+] Less [-]Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds
2016
Amélineau, Françoise | Bonnet, Delphine | Heitz, Olivier | Mortreux, Serge | Harding, Ann M.A. | Karnovsky, Nina J. | Walkusz, Wojciech | Fort, Jérôme | Grémillet, David | Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) ; Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | MARine Biodiversity Exploitation and Conservation (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) | Université de Montpellier (UM) | Alaska Pacific University | Pomona College | Fisheries and Oceans ; Fisheries and Oceans | Institute of Oceanology ; Polska Akademia Nauk = Polish Academy of Sciences (PAN) | LIttoral ENvironnement et Sociétés (LIENSs) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Percy FitzPatrick Institute ; University of Cape Town
International audience | Microplastics have been reported everywhere around the globe. With very limited human activities, the Arctic is distant from major sources of microplastics. However, microplastic ingestions have been found in several Arctic marine predators, confirming their presence in this region. Nonetheless, existing information for this area remains scarce, thus there is an urgent need to quantify the contamination of Arctic marine waters. In this context, we studied microplastic abundance and composition within the zooplankton community off East Greenland. For the same area, we concurrently evaluated microplastic contamination of little auks (Alle alle), an Arctic seabird feeding on zooplankton while diving between 0 and 50 m. The study took place off East Greenland in July 2005 and 2014, under strongly contrasted sea-ice conditions. Among all samples, 97.2% of the debris found were filaments. Despite the remoteness of our study area, microplastic abundances were comparable to those of other oceans, with 0.99 ± 0.62 m−3 in the presence of sea-ice (2005), and 2.38 ± 1.11 m−3 in the nearby absence of sea-ice (2014). Microplastic rise between 2005 and 2014 might be linked to an increase in plastic production worldwide or to lower sea-ice extents in 2014, as sea-ice can represent a sink for microplastic particles, which are subsequently released to the water column upon melting. Crucially, all birds had eaten plastic filaments, and they collected high levels of microplastics compared to background levels with 9.99 and 8.99 pieces per chick meal in 2005 and 2014, respectively. Importantly, we also demonstrated that little auks took more often light colored microplastics, rather than darker ones, strongly suggesting an active contamination with birds mistaking microplastics for their natural prey. Overall, our study stresses the great vulnerability of Arctic marine species to microplastic pollution in a warming Arctic, where sea-ice melting is expected to release vast volumes of trapped debris.
Show more [+] Less [-]Plastic burdens in northern fulmars from Svalbard: Looking back 25 years
2022
Collard, France | Bangjord, Georg | Herzke, Dorte | Gabrielsen, Geir W
peer reviewed | The northern fulmar Fulmarus glacialis ingests a larger number of (micro)plastics than many other seabirds due to its feeding habits and gut morphology. Since 2002, they are bioindicators of marine plastics in the North Sea region, and data are needed to extend the programme to other parts of their distribution areas, such as the Arctic. In this study, we provide data on ingested plastics by fulmars collected in 1997 in Kongsfjorden, Svalbard. An extraction protocol with KOH was used and for half of the birds, the gizzard and the proventricular contents were analysed separately. Ninety-one percent of the birds had ingested at least one piece of plastic with an average of 10.3 (±11.9 SD) pieces. The gizzards contained significantly more plastics than the proventriculus. Hard fragments and polyethylene were the most common characteristics. Twelve percent of the birds exceeded the EcoQO value of 0.1 g.
Show more [+] Less [-]Magnetic resonance imaging for non-invasive measurement of plastic ingestion in marine wildlife
2022
Anderssen, Kathryn E | Gabrielsen, Geir Wing | Kranz, Mathias | Collard, France
peer reviewed | Monitoring plastic ingestion by marine wildlife is important for both characterizing the extent of plastic pollution in the environment and understanding its effect on species and ecosystems. Current methods to detect plastic in the digestive system of animals are slow and invasive, such that the number of animals that can be screened is limited. In this article, magnetic resonance imaging (MRI) is investigated as a possible technology to perform rapid, non-invasive detection of plastic ingestion. Standard MRI methods were able to directly measure one type of plastic in a fulmar stomach and another type was able to be indirectly detected. In addition to MRI, other standard nuclear magnetic resonance (NMR) measurements were made. Different types of plastic were tested, and distinctive NMR signal characteristics were found in common for each type, allowing them to be distinguished from one another. The NMR results indicate specialized MRI sequences could be used to directly image several types of plastic. Although current commercial MRI technology is not suitable for field use, existing single-sided MRI research systems could be adapted for use outside the laboratory and become an important tool for future monitoring of wild animals.
Show more [+] Less [-]Polycyclic aromatic compounds (PACs) in the Canadian environment: Links to global change
2021
Muir, Derek C.G. | Galarneau, Elisabeth
In this review, global change processes have been linked to polycyclic aromatic compounds (PACs) in Canada and a first national budget of sources and sinks has been derived. Sources are dominated by wildfire emissions that affect western and northern regions of Canada disproportionately due to the location of Pacific and boreal forests and the direction of prevailing winds. Wildfire emissions are projected to increase under climate warming along with releases from the thawing of glaciers and permafrost. Residential wood combustion, domestic transportation and industry contribute the bulk of anthropogenic emissions, though they are substantially smaller than wildfire emissions and are not expected to change considerably in coming years. Other sources such as accidental spills, deforestation, and re-emission of previous industrial deposition are expected to contribute anthropogenic and biogenic PACs to nearby ecosystems. PAC sinks are less well-understood. Atmospheric deposition is similar in magnitude to anthropogenic sources. Considerable knowledge gaps preclude the estimation of environmental transformations and transboundary flows, and assessing the importance of climate change relative to shifts in population distribution and energy production is not yet possible. The outlook for PACs in the Arctic is uncertain due to conflicting assessments of competing factors and limited measurements, some of which provide a baseline but have not been followed up in recent years. Climate change has led to an increase in primary productivity in the Arctic Ocean, but PAC-related impacts on marine biota appear to be modest. The net effect of changes in ecological exposure from changing emissions and environmental conditions throughout Canada remains to be seen. Evidence suggests that the PAC budget at the national scale does not represent impacts at the local or regional level. The ability to assess future trends depends on improvements to Canada’s environmental measurement strategy and biogeochemical modelling capability.
Show more [+] Less [-]Abundance and distribution of microplastics in the surface sediments from the northern Bering and Chukchi Seas
2019
Mu, Jingli | Qu, Ling | Jin, Fei | Zhang, Shoufeng | Fang, Chao | Ma, Xindong | Zhang, Weiwei | Huo, Cheng | Cong, Yi | Wang, Juying
Worldwide the seafloor has been recognized as a major sink for microplastics. However, currently nothing is known about the sediment microplastic pollution in the North Pacific sector of the Arctic Ocean. Here, we present the first record of microplastic contamination in the surface sediment from the northern Bering and Chukchi Seas. The microplastics were extracted by the density separation method from collected samples. Each particle was identified using the microscopic Fourier transform infrared spectroscopy (μFTIR). The abundances of microplastics in sediments from all sites ranged from not detected (ND) to 68.78 items/kg dry weight (DW) of sediment. The highest level of microplastic contamination in the sediment was detected from the Chukchi Sea. A negative correlation between microplastic abundance and water depth was observed. Polypropylene (PP) accounted for the largest proportion (51.5%) of the identified microplastic particles, followed by polyethylene terephthalate (PET) (35.2%) and rayon (13.3%). Fibers constituted the most common shape of plastic particles. The range of polymer types, physical shapes and spatial distribution characteristics of the microplastics suggest that water masses from the Pacific and local coastal inputs are possible sources for the microplastics found in the study area. In overall, our results highlight the global distribution of these anthropogenic pollutants and the importance of management action to reduce marine debris worldwide.
Show more [+] Less [-]Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil
2016
Increasing anthropogenic activities in the Arctic represent an enhanced threat for oil pollution in a marine environment that is already at risk from climate warming. In particular, this applies to species with free-living pelagic larvae that aggregate in surface waters and under the sea ice where hydrocarbons are likely to remain for extended periods of time due to low temperatures. We exposed the positively buoyant eggs of polar cod (Boreogadus saida), an arctic keystone species, to realistic concentrations of a crude oil water-soluble fraction (WSF), mimicking exposure of eggs aggregating under the ice to oil WSF leaking from brine channels following encapsulation in ice. Total hydrocarbon and polycyclic aromatic hydrocarbon levels were in the ng/L range, with most exposure concentrations below the limits of detection throughout the experiment for all treatments. The proportion of viable, free-swimming larvae decreased significantly with dose and showed increases in the incidence and severity of spine curvature, yolk sac alterations and a reduction in spine length. These effects are expected to compromise the motility, feeding capacity, and predator avoidance during critical early life stages for this important species. Our results imply that the viability and fitness of polar cod early life stages is significantly reduced when exposed to extremely low and environmentally realistic levels of aqueous hydrocarbons, which may have important implications for arctic food web dynamics and ecosystem functioning.
Show more [+] Less [-]Occurrence of ingested human litter in winter arctic foxes (Vulpes lagopus) from Svalbard, Norway
2022
Hallanger, Ingeborg G. | Ask, Amalie | Fuglei, Eva
The aim of this study is to assess the occurrence of human litter ingested by arctic foxes (Vulpes lagopus) caught in Svalbard, Norway, in winter when scavenging is at its highest. Twenty arctic fox stomachs and intestines were examined for human litter and plastic using the protocol from the Oslo-Paris Convention (OSPAR) for monitoring plastic ingestion by the northern fulmar (Fulmarus glacialis) (human litter and plastic >1 mm). The arctic foxes had ingested human litter at a low frequency (15%, 3 out of 20 foxes). Despite the low sample size, we do not regard ingestion of human litter as an immediate threat to the arctic fox population in Svalbard.
Show more [+] Less [-]Investigation of distribution, transportation, and impact factors of atmospheric black carbon in the Arctic region based on a regional climate-chemistry model
2020
Chen, Xintong | Kang, Shichang | Yang, Junhua
Black carbon (BC) as the main component of pollutants in the Arctic plays an important role on regional climate change. In this study, we applied the regional climate-chemistry model, WRF-Chem, to investigate the spatial distribution, transportation, and impact factors of BC in the Arctic. Compared with reanalysis data and observations, the WRF-Chem performed well in terms of the seasonal variations of meteorological parameters and BC concentrations, indicating the applicability of this model on Arctic BC simulation works. Our results showed that the BC concentrations in the Arctic had an obviously seasonalvariation pattern. Surface BC concentrations peaked during winter and spring seasons, while the minimum occurred during summer and autumn seasons. For the vertical distribution, BC aerosols mainly concentrated in the Arctic lower troposphere, and most of BC distributed near the surface during winter and spring seasons and in the higher altitude during other seasons. The seasonality of BC was associated with the seasonal change of meteorological field. During winter, the significant northward airflow prevailing in northern Eurasia caused the transport of accumulated pollutants from this region into the Arctic. The similar but weakened northward airflow pattern and the anticyclone activity during spring can allow pollutants to be transported to the Arctic lower troposphere. Moreover, the more stable atmosphere during winter and spring seasons made BC accumulated mainly near the surface. During summer and autumn seasons, the less stable boundary layer and the cyclone activity in the Arctic facilitated the diffusion of pollutants into the higher altitude. Meanwhile, the higher relative humidity can promote the wet removal process and lead to the relatively lower BC concentrations near the surface. Compared with the seasonal change of emission, our analysis showed that the seasonal variation of meteorological field was the main contributor for the seasonality of BC in the Arctic.
Show more [+] Less [-]