Refine search
Results 1-10 of 17
Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US Full text
2007
Boggs, J.L. | McNulty, S.G. | Pardo, L.H.
We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999, we observed a significant correlation between mean growing season temperature and red spruce basal area growth. Red spruce and deciduous foliar %N correlated significantly with N deposition. Although N deposition has not changed significantly from 1987/1988 to 1999, net nitrification potential decreased significantly at Whiteface. This decrease in net potential nitrification is not consistent with the N saturation hypothesis and suggests that non-N deposition controls, such as climatic factors and immobilization of down dead wood, might have limited N cycling. Data from the 1999 remeasurement of the red spruce forests suggest that N deposition, to some extent, is continuing to influence red spruce across the northeastern US as illustrated by a significant correlation between N deposition and red spruce foliar %N. Our data also suggest that the decrease in forest floor %N and net nitrification potential across sites from 1987 to 1999 may be due to factors other than N deposition, such as climatic factors and N immobilization in fine woody material (<5 cm diameter).
Show more [+] Less [-]Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US Full text
2007
Pardo, L.H. | McNulty, S.G. | Boggs, J.L. | Duke, S.
Recent studies have demonstrated that natural abundance 15N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, δ15N of foliage and soil also increases. We measured foliar δ15N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar δ15N increased from -5.2 to -0.7[per thousand] with increasing N deposition from Maine to NY. Foliar δ15N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar δ15N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988. Foliar δ15N increased with increasing N deposition from Maine to NY, but decreased between 1987-1988 and 1999
Show more [+] Less [-]Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens Full text
2007
Geiser, L.H. | Neitlich, P.N.
Human activity is changing air quality and climate in the US Pacific Northwest. In a first application of non-metric multidimensional scaling to a large-scale, framework dataset, we modeled lichen community response to air quality and climate gradients at 1416 forested 0.4 ha plots. Model development balanced polluted plots across elevation, forest type and precipitation ranges to isolate pollution response. Air and climate scores were fitted for remaining plots, classed by lichen bioeffects, and mapped. Projected 2040 temperatures would create climate zones with no current analogue. Worst air scores occurred in urban-industrial and agricultural valleys and represented 24% of the landscape. They were correlated with: absence of sensitive lichens, enhancement of nitrophilous lichens, mean wet deposition of ammonium >0.06 mg l-1, lichen nitrogen and sulfur concentrations >0.6% and 0.07%, and SO2 levels harmful to sensitive lichens. The model can detect changes in air quality and climate by scoring re-measurements. Lichen-based air quality and climate gradients in western Oregon and Washington are responsive to regionally increasing nitrogen availability and to temperature changes predicted by climate models.
Show more [+] Less [-]Use of 15N-labelled nitrogen deposition to quantify the source of nitrogen in runoff at a coniferous-forested catchment at Gårdsjön, Sweden Full text
2007
Kjonaas, O.J. | Wright, R.F.
To determine the source of dissolved inorganic nitrogen (N) in runoff, approx. 35 kg N enriched with the stable isotope 15N (2110[per thousand] δ15N) was added to a mature coniferous forested catchment for one whole year. The total N input was approx. 50 kg ha-1 year-1. The enrichment study was part of a long-term whole-catchment ammonium nitrate addition experiment at Gårdsjön, Sweden. The 15N concentrations in precipitation, throughfall, runoff and upper forest floor were measured prior to, during, and 3-9 years following the 15N addition. During the year of the 15N addition the δ15N level in runoff largely reflected the level in incoming N, indicating that the leached NO3- came predominantly from precipitation. Only 1.1% of the incoming N was lost during the year of the tracer addition. The cumulative loss of tracer N over a 10-year period was only 3.9% as DIN and 1.1% as DON. 15N tracer addition showed that initially the main source of NO3- in runoff was N from atmospheric deposition.
Show more [+] Less [-]Assessing airborne pollution effects on bryophytes--lessons learned through long-term integrated monitoring in Austria Full text
2007
Zechmeister, H.G. | Dirnbock, T. | Hulber, K. | Mirtl, M.
The study uses measured and calculated data on airborne pollutants, particularly nitrogen (ranges between 28 to 43 kg N*ha-1*yr-1) and sulphur (10 to 18 kg SO4-S*ha-1*yr-1), in order to assess their long-term (1992 to 2005) effects on bryophytes at the UN-ECE Integrated Monitoring site 'Zöbelboden' in Austria. Bryophytes were used as reaction indicators on 20 epiphytic plots using the IM monitoring method and on 14 terrestrial plots using standardised photography. The plots were recorded in the years 1992, 1993, 1998, and 2004/2005. Most species remained stable in terms of their overall population size during the observed period, even though there were rapid turnover rates of a large percentage of species on all investigated plots. Only a few bryophytes (Hypnum cupressiforme, Leucodon sciuroides) responded unambiguously to N and S deposition. Nitrogen deposition had a weak but significant effect on the distribution of bryophyte communities. However, the time shifts in bryophyte communities did not depend on total deposition of N and S. Bryophytes show ambiguous response to airborne pollutants during 14 years of monitoring in a forest ecosystem.
Show more [+] Less [-]Ion Fluxes with Bulk and Throughfall Deposition along an Urban-Suburban-Rural Gradient Full text
2007
Fluxes of principal anions and cations with bulk and throughfall deposition during the growing period (April-September) were investigated for three years (2001-2003) at three sites differently exposed to the second biggest Lithuanian city - Kaunas. Fluxes of all investigated anions (SO₄ ²-, NO₃ - and Cl-) and most cations were found to be the highest in suburban area to compare with both - Rural and urban sites. The highest seasonal variability of monthly ion fluxes and the highest differences between throughfall and bulk fluxes (net throughfall) were recorded in suburban area. The highest throughfall enrichment by sulphur was detected in spring and the beginning of summer (April, May) in urban and especially in suburban sites. For nitrogen compounds (NO₃ -, NH₄ ⁺) positive net throughfall values were characteristic for urban and suburban sites and negative for rural site almost during the entire growing period. Uptake of NH₄ ⁺ ions was detected to be much higher of that for nitrates in rural area (46% vs. 22%). The most intensive enrichment of throughfall fluxes by K⁺ ions took place during the summer time (May, June, July), however, intensity of potassium leaching at the same amount of precipitation was the highest in suburban area.
Show more [+] Less [-]Atmospheric Cu and Pb Deposition and Transport in Lake Sediments in a Remote Mountain Area, Northern China Full text
2007
Han, Yongming | Jin, Zhangdong | Cao, Junji | Posmentier, Eric S. | An, Zhisheng
A complete record derived from the core from the Daihai Lake in a remote area provides new insights into the changing atmospheric heavy metal deposition associated with historical industrial activities, the Asian monsoon, long-range transport, and the chemical composition of matter derived from weathering of catchment. The fluctuation of lithogenic element concentration in the lake sediments can readily be explained by a particle sorting effect induced by the Asian monsoon. The variation of atmospheric deposition of Cu and Pb shows a similar profile in the lower part of the core sediments, and coincides with environmental change, with high atmospheric deposition coupled with wet, temperate period; while low deposition with dry, cold period, indicating a transport variation of heavy metal pollutants entrained by the Asian summer monsoon. From the beginning of nineteenth century, the atmospheric deposition of Cu and Pb decreased and then slowly increased. This may be associated with the destroyed industry induced by long-term wars in China and the less heavy metal pollutants relative to the weak Asian summer monsoon in this period. Comparison between atmospheric-derived metal and sediment trap metal using Ga as the reference element shows that atmospheric Cu and Pb budgets do not exceed the fluvially-induced Cu and Pb budgets in the indirectly disturbed area. On average, there have been approximately 5.4 mg m-² yr-¹ of Cu and 5.1 mg m-² yr-¹ of Pb atmospherically deposited in the region.
Show more [+] Less [-]Contribution of dissolved organic nitrogen deposition to nitrogen saturation in a forested mountainous watershed in Tsukui, Central Japan Full text
2007
Ham, Young-Sik | Tamiya, Sayaka | Choi, I-Song
Nitrogen (N) budget was estimated with dissolved inorganic N (DIN) and dissolved organic N (DON) in a forested mountainous watershed in Tsukui, Kanagawa Prefecture, about 50 km west of Tokyo in Central Japan. The forest vegetation in the watershed was dominant by Konara oak (Quercus serrata) and Korean hornbeam (Carpinus tschonoskii), and Japanese cedar (Cryptomeria japonica). Nitrate (NO₃ -) concentration in the watershed streamwater was averagely high (98.0 ±± 19 (±± SD, n = 36) μmol L-¹) during 2001-2003. There was no seasonal and annual changes in the stream NO- ₃ concentration even though the highest N uptake rate presumably occurred during the spring of plant growing season, a fact indicating that N availability was in excess of biotic demands. The DON deposition rates (DON input rates) in open area and forest area were estimated as one of the main N sources, accounting for about 32% of total dissolved N (TDN). It was estimated that a part of the DON input rate contributed to the excessive stream NO- ₃ output rate under the condition of the rapid mineralization and nitrification rates, which annual DON deposition rates were positively correlated with the stream NO₃ - output rates. The DON retention rate in the DON budget had a potential capacity, which contributed to the excessive stream NO- ₃ output rate without other N contributions (e.g. forest floor N or soil N).
Show more [+] Less [-]Potential Nitrate Leaching Under Common Landscaping Plants Full text
2007
Amador, José A. | Hull, Richard J. | Patenaude, Erika L. | Bushoven, John T. | Görres, Josef H.
Studies on N losses from ornamental plantings - other than turf - are scant despite the ubiquity of these landscaping elements. We compared pore water NO₃ and extractable soil NO₃ and NH₄ in areas with turf, areas with seven different types of ornamental landscape plantings, and a native woodland. Turf areas received annual N inputs of ~48 kg ha-¹ and annual flowers received ~24 kg N ha-¹ at the time of planting. None of the other areas were fertilized during the course of the study. Data were collected on 23 occasions between June 2002 and November 2003. Pore water NO₃ concentrations at a 60-cm depth - based on pooled data - were highest (1.4 to 7.8 mg NO₃-N l-¹) under ground covers, unplanted-mulched areas, turf, deciduous trees, and evergreen trees, with no differences among these vegetation types. Lower values were observed under woodlands, annual and perennial flowers, and evergreen and deciduous shrubs. Pore water NO₃ concentrations exceeded the drinking water regulatory limit of 10 mg NO₃-N l-¹ under ground covers, turf and unplanted-mulched areas in 39, 20 and 10% of samples, respectively. Leaching losses of NO₃-N over 18 months ranged from 0.17 kg N ha-¹ in the woodlands to 34.97 kg N ha-¹ under ground covers. Annual NO₃ losses under unplanted-mulched areas and ground covers were approximately twice the average N input (10 kg N ha-¹ year-¹) from atmospheric deposition. Extractable NO₃ in woodland soils (0.5 μg NO₃-N g-¹) was lower than for all other vegetation types (3.1-7.8 μg NO₃-N g-¹). Extractable NH₄ levels were highest in woodlands, deciduous trees, and annual flowers (6.7-10.1 μg NH₄-N g-¹). Most vegetation types appear to act as net N sinks relative to atmospheric inputs, whereas unplanted-mulched areas and areas planted with ground covers act as net sources of NO₃ to groundwater.
Show more [+] Less [-]The Geochemistry of Ombrotrophic Sphagnum Species Growing in Different Microhabitats Of Eight German and Belgian Peat Bogs and the Regional Atmospheric Deposition Full text
2007
Kempter, Heike | Frenzel, Burkhard
Comparing today's atmospheric deposition records with the elemental concentration and the net-uptake rates of ombrotrophic Sphagnum mosses from eight German and Belgian peat bogs revealed that most of all the quality and number of regularly obtained deposition monitoring data is not satisfactory. Moreover, it seems likely that the deposition rate, determined by Sphagnum mosses, does not reliably reflect the record of the total open field deposition indicated by the deposition monitoring data. The moss data, too, show a distinct spatial variability possibly because the geochemistry of peat mosses differs according to the annual growth in height, the total surface area and the surface roughness of the receptor 'peat moss' (special interception deposition). Increased Ti concentration values, for example, combined with a high annual growth rate in height at the hollow moss S. cuspidatum resulted in generally high Ti net-uptake rates and a high Ti inventory (total Ti in sample). We, therefore, suggest that productive Sphagnum species might be able to fix more Ti particles on their larger surface area than less productive species do. Moreover, the results demonstrate that for reliably calculating Sphagnum elemental net-uptake rates, as well as for all quantification of Sphagnum or peat geochemistry on a time and area basis, an accurate knowledge of the period the collected samples were exposed to atmospheric deposition is required. In particular, to do reliable reconstructions of past atmospheric deposition rates using peat deposits, further studies are needed to precisely specify the spatial variability in the geochemistry of living Sphagnum mosses.
Show more [+] Less [-]